Enhancement of Augmentation Signal Availability by SBAS Implementation with the QZSS Constellation

Takeyasu Sakai, Mitsunori Kitamura, and Takahiro Aso
Electronic Navigation Research Institute
National Institute of Maritime, Port and Aviation Technology, Japan

Introduction

- SBAS: Satellite-Based Augmentation System
 - International standard augmentation system.
 - Transmits Augmentation information from the SBAS satellite.
 - Augments GNSS in terms of integrity and accuracy.
 - Current standard: Single-frequency SBAS on L1 transmitted by GEO.
 - US WAAS, Japanese MSAS, European EGNOS, Indian GAGAN.

- DFMC SBAS: The Second Generation SBAS
 - Dual-Frequency Multi-Constellation SBAS.
 - ENRI has been conducting DFMC SBAS experiment via QZSS L5S signal.

- Innovation: Augmentation Service by IGSO Satellites
 - DFMC SBAS could be transmitted by IGSO SBAS satellite.
 - Including QZSS IGSO.
 - Possible solution for applications where GEO signal is likely blocked.
 - Enables SBAS service independent of the latitude of the service area by combination of dual-frequency operation and IGSO transmission.
SBAS Architecture

- Monitors consistency of GNSS signals on the ground.
- Transmits differential correction and integrity information via SBAS satellite.

Limitation: The current standard (L1 SBAS) allows transmission only from GEO.

NAVCANADA Reports

- CRJ circuits at Stephenville, NL (48.6N 58.6W).
- GEO signal is likely blocked due to attitude (pitching and banking).

Galaxy 15 GEO (133W) at Az 258° El 1.5°

Reported by Steve Bellingham of NAVCANADA at SBAS IWG/32 in Seoul.
NAVCANADA Reports

SLIDE 4

• Dash-8 arrival at Iqaluit, NU (63.7N 68.5W).
• They have also reported similar situation for departure.

Reported by Steve Bellingham of NAVCANADA at SBAS IWG/32 in Seoul

Galaxy 15 GEO (133W)
at Az 247° El 2.3°

SLIDE 5

Solution: Usage of IGSO

• DFMC SBAS could be transmitted by non-GEO satellites like QZSS IGSO.
• Improves availability of augmentation signals where GEO signal is blocked.
 - Arctic/Nordic regions, mountain area, urban canyon,…
 - Navigating Arctic routes and precise positioning for resource exploration.
 - Note DFMC SBAS is not influenced by ionosphere even in Equatorial regions.
 - Seamless service from Equator to Poles, mountain to urban canyons…

Galaxy 15 GEO (133W) at Az 247° El 2.3°

Reported by Steve Bellingham of NAVCANADA at SBAS IWG/32 in Seoul

They have also reported similar situation for departure.
Visibility from Nordic Region

- Elevation angles computed from QZS-1/2/4 almanacs.
- QZSS IGSO satellites are visible in Nordic region; Elevation is higher than EGNOS GEO at some location.

Visibility from Alaska

- Elevation angles computed from QZS-1/2/4 almanacs.
- QZSS IGSO satellites are visible in Alaska region; Could transmit signals always from higher elevation than WAAS GEO.
DFMC SBAS by IGSO Satellites

• The Current SBAS
 – Single-Frequency service transmitted by GEO.
 ➢ Limited availability in the low latitude regions due to the ionospheric activities.
 ➢ GEO signal is likely blocked for some applications.

• DFMC (Dual-Frequency Multi-Constellation) SBAS
 – The second generation SBAS following the current SBAS.
 ➢ Eliminates ionospheric effects thanks to dual-frequency operation.
 ◆ Robust navigation service everywhere in the coverage.
 ➢ Could be transmitted by non-GEO SBAS satellites like QZSS IGSO.
 – Standardization activities ongoing by the ICAO.

• New Feature: Transmission by Non-GEO SBAS
 – DFMC SBAS could be transmitted by non-GEO satellites like QZSS IGSO.
 – Improves availability of augmentation signals where GEO signal is blocked.

Status of Standardization

• ICAO (International Civil Aviation Organization) has been discussing DFMC SBAS standards.
 – NSP (Navigation Systems Panel) has prepared the technical baseline SARPS (standards and recommended practices).
 – Defined as L5 SBAS using L5 frequency.
 ➢ L5 SBAS will be added to the current SARPS defining L1 SBAS.
 – RF specification and message contents are almost fixed.
 ➢ Validation activities are ongoing.
 ➢ Allows Non-GEO SBAS transmission as well as other new capabilities.
 – Target: Adoption by End of 2020 (NSP/7 meeting).

• EUROCAE has discussed receiver specifications.
 – WG-62 is preparing MOPS (Minimum Operational Performance Standards) for DFMC SBAS receivers.
 ➢ GPS/Galileo-capable L1/L5 dual-frequency processing.
 – Processing non-GEO SBAS signals is defined and likely optional function.
Prototype DFMC SBAS

- Prototype DFMC SBAS Developed by Japan
 - The second generation SBAS following L1 SBAS.
 - Eliminates ionospheric effects thanks to dual-frequency operation.
 - Vertical guidance service everywhere in the coverage.
 - Electronic Navigation Research Institute, National Institute of Maritime, Port and Aviation Technology has developed the prototype.
 - GPS/GLONASS/Galileo/QZSS-capable dual-frequency SBAS.
 - Compliant with the draft standards of L5 SBAS being discussed at ICAO.
 - With 8-bit preamble and no Manchester encoding.
 - Helps validation activities ongoing at ICAO.

- DFMC SBAS Experiment has been Conducted with QZSS
 - The First L5 SBAS experiment with live L5 signal from the space.
 - Using QZSS L5S augmentation signal transmitted from QZS-2, -3, and -4.
 - Prototype DFMC SBAS is used for the experiment.
 - Began the experiment on 23 Aug. 2017 via L5S signal of QZS-2 IGSO.
 - Now transmitting from QZS-2/4 IGSO and QZS-3 GEO.

Experimental Configuration

- Supports DFMC
- Provides observation in real time
- Operates in real time
- Dual-Frequency
- Supports GPS, GLONASS, Galileo, and QZSS
- Uplink L5 SBAS message stream for transmission
Real Time Experiment

- Evaluation of L5 SBAS message generated in real time.
 - Supporting GPS, Galileo, and QZSS in L1/L5 dual-frequency mode.
 - Confirmed that L5 SBAS augments multi-constellation of GPS+Galileo+QZSS.

Monitor Stations
- GPS+Galileo+QZSS
- Dual Frequency (L1+L5)
- DFMC L5 SBAS
- Location: GEONET 950369 (Wakayama)
- Period: 2017/11/13 01:00 - 07:00 (6H)

Output Message Stream
- Clock/Orbit Correction
- Position Solution
- Satellites in Sky
- Galileo SV-8
- Monitored Satellites
- 5 GPS
- No GLONASS
- 7 Galileo
- 2 QZSS

Real Time Experiment
Long-Term Stability Test

- Evaluated long-term performance using archive data at GEONET 950369 Wakayama.
 - Prototype DFMC SBAS runs not in real time for this test.
- Confirmed stable performance for a year; Horizontal ~0.5m and Vertical ~1m.

Reception Trial in Prague

- Preliminary Action with GSA (European GNSS Agency)
 - The first trial to receive L5S signal in Europe.
 - Conducted on March 21-22 at the GSA HQ.
 - Will be followed by the trial in Nordic Region hopefully in this summer.
Observed L5 Signals

- Observation by JAVAD Rx: Many Galileo satellites are tracked.
- Observation by Furuno Rx: QZS-2 IGSO above 5 deg. elevation during night time in CET.

L5S Signal Reception

- QZS-2 L5S signal observed by Furuno Rx.
- 0 to 7 deg. elevation with C/N₀ of 30 to 45 dB-Hz.
- LSS message stream successfully decoded.
Decoding L5S Message Stream

Logging Decoded Messages
Decoded L5 SBAS Message

- QZS-2 L5S message stream successfully logged and decoded.
- Contains L5 SBAS message.
 - Confirms the message transmission only: The message has been generated based on domestic stations within Japanese territory.

Conclusion

- SBAS: International Standard Augmentation System
 - Augments GNSS in terms of integrity and accuracy.
 - The standardization of DFMC SBAS is ongoing by the ICAO.
 - Eliminates ionospheric effects thanks to dual-frequency operation.
 - Could be transmitted by non-GEO SBAS satellites like QZSS IGSO.
 - ENRI has been conducting the DFMC SBAS experiment by its own prototype via QZSS L5S signal; Recently reception trial in Prague.
- IGSO SBAS Concept
 - Possible solution for applications where GEO signal is likely blocked.
 - High latitude/polar regions, mountain area, urban canyon,…
 - Navigating Arctic routes and precise positioning for resource exploration.
 - Enables SBAS service independent of the latitude of the service area by combination of dual-frequency operation and IGSO transmission.
 - Discussions with the northland countries are welcome!
- Contact for more discussion:
 Dr. Takeyasu Sakai <sakai@mpat.go.jp>
 National Institute of Maritime, Port and Aviation Technology, Japan