MLS高低誘導の移相器故障による測角誤差の実験とシミュレーション

松本千秋* 朝倉道弘* 惟村和宣*

Experiment and Simulation on Angle Error by the Phase Shifters Failure of MLS Elevation Subsystem

Chiaki MATSUMOTO, Michihiro ASAKURA and Kazunobu KOREMURA

Abstract

MLS (Microwave Landing System) are required high integrity and continuity of service because of its higher operational requirement.

Beam Stearing Unit (phase shifters) in phased array antenna is considered as one of the most important element which affects the performance of the system. The beam scanning has high redandancy to the failure of the shifters. However, the guidance signal quality degrade, in case that a number of phase shifters are failed.

This paper describes an analysis of the failure of the phase shifters, ground and flight experiment and a method of computer simulation for the failures.

Results obtained here are as follows;
(1) Significant angle errors were observed when succesive the 2-π phase shifters ware failed.
(2) The failures occured in the center of the array antenna showed small error. However, a large error was shown, when failed phase shifters were in the position of 1/3 or 2/3 of the array. These results were observed both the simulation and the ground experiment.
(3) The computer simulation results agree well with the experimental results.

The simulation developed here are available to investigate the system design and maintenance level design, the integrity and continuity of service for MLS.

* 電子航法開発部
1. まえがき

MLS (Microwave Landing System マイクロ波着陸システム) は、空港における航空交通の処理能力、安全性などの向上を目的として開発され、現用の ILS に代わって 1990 年代後半より運用が予定されている。

当研究所では、基礎実験用に高低誘導装置を試作し、地上実験および飛行実験を行い、基本的な測角特性が得られたことについて、すでに報告した(2),(3),(4)。

MLS の角度系のビーム走査には一般に、フェイズド・アレイ・アンテナが用いられている。ビーム走査は、放射素子アレイに接続した移相器の位相制御により行われる。地上装置は、主として送信装置とビーム走査アンテナで構成されるが、送信装置は 2 重とし、各種のモニタを装備するなど、MLS 運用の完全性および連続性を高め、システム全体の高信頼性を図っている。

しかし、走査アンテナは、その位置が角度情報の基準点となるため、2 重装置が困難である。そこで、走査アンテナでは、放射素子を含む高周波系、移相器、それを駆動する走査制御器など構成回路の動作を 2 重、3 重にモニタする機構を設けている。なかでも移相器については、使用する個数が 60 〜 120 と多く、各々に多数の PIN ダイオードを用いているため、その故障による誘導性能への影響が問題となる。

移相器については動作を監視するモニタ機構を備え、移相器の故障状態を常時把握する内部モニタを採用している。これにより、測角誤差などを検出す能力としてフィールド・モニタのアンテナやインターグラル・モニタが、特定の角度以外の測角誤差を検出することが困難なためである。

移相器故障が発生した場合、アレイの移相器数が多いので故障条件によっては、ほとんど測角に影響を及ぼさない冗長性をもっている。しかし、故障条件によっては誤差が増大するため、故障が生ずることが考えられる。このため、移相器故障と測角誤差の関係を解析することにより、地上装置の保守運用基準およびモニタ方式の検討などに必要である。

ここでは、まず、高低誘導装置の移相器で発生する故障を想定して、その各々の故障の特性を測定して解析した。次に、これを基に、故障を用いて地上実験と飛行実験を行い、地上実験では移相器故障による測角特性を測定し、受信ビーム・エンベロープの波形観測を行った。また、移相器故障による簡単な測角誤差シミュレーション・モデルを用い、誤差特性とビーム・エンベロープを求めて実験結果と比較し、検討を行った。

図 1. 走査アンテナとビーム走査

--- 34 ---
2. 走査アンテナと移相器故障

2.1 ビーム走査と測角

高低誘導走査アンテナの構成とビーム走査による受信仰角の関係を図1に示す。走査アンテナはアンテナ放射素子、移相器および電力分配器などで構成されるフェイズド・アレイである。送信機からビーム走査期間中、マイクロ波信号が走査アンテナに送られ、電力分配器は各アンテナ素子に所定の開口電力分布を与え垂直方向に狭いファン・ビームを形成する。走査アンテナの移相器配列状況を図2に示す。移相器はビーム走査角θにに対応する制御信号により給電位相を制御して、ビームの往復走査を行う。

高低誘導の測角は、仰角θαにいる航空機が走査ビームを受信すると、2つのパルス状のビーム・エンベロープを生じ、これらの時間間隔を測定することにより行われる。この測角に含まれる誤差の原因として、地上装置の走査アンテナ、移相器などの製作誤差によるもの、走査アンテナを設置した周辺建造物からの反射によるマルチパス波、または建造物のしゃ蔽による回折波の影響や受信機の信号処理過程によるものなどがある。測角誤差はシステム全体が正常に機能し、反射や回折があるような領域を除けば、十分小さく、ICAO SARPの基準を満足していることを地上実験や飛行実験で確認した(3),(4)。

図2 走査アンテナの移相器配列状況

図3 移相器の構成

—35—
2.2 移相器の故障特性

移相器の故障は走査アンテナの格電位相や開口電力分布に影響を及ぼす。この結果、ビーム指向精度の低下やサイドローブ・レベルの増加などから受信ビーム・エンベロープの歪みやずれを生じ、測角誤差が増加する。

移相器の故障による測角誤差についてシミュレーションを行うため、故障特性を検討する。

MLSのビーム走査用には、一般に4ビットの移相器を使用する。実験に用いた走査アンテナの

走査制御信号入力

\[\phi_1 \quad \phi_2 \]

\[\text{PIN ダイオード} \]

\[\phi: \text{移相量} \]

<table>
<thead>
<tr>
<th>故障状態</th>
<th>特性</th>
</tr>
</thead>
<tbody>
<tr>
<td>ドライバ回路</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>ドライバ出力 1に固定</td>
</tr>
<tr>
<td>2</td>
<td>" 0 "</td>
</tr>
<tr>
<td>3</td>
<td>パイアス線路 短絡</td>
</tr>
<tr>
<td>4</td>
<td>" 断線</td>
</tr>
<tr>
<td>移相回路</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>PIN ダイオード 短絡 1個</td>
</tr>
<tr>
<td>6</td>
<td>" 2個</td>
</tr>
<tr>
<td>7</td>
<td>PIN ダイオード 開放 1個</td>
</tr>
<tr>
<td>8</td>
<td>" 2個</td>
</tr>
</tbody>
</table>

※ 位相偏移は正常な移相量を1とした。

表1 移相器故障内容と特性

---36---
図4 移相器PINダイオード故障の位相特性の測定結果
移相器は\(\pi, \pi/2, \pi/4, \pi/8 \)（rad）の各移相回路を継続接続したもので、これらを走査制御器からの4ビットのデジタル信号で制御する。移相器の概略構成を図3に示す。移相回路の方法は3dBハイブリッド・カプラの端部にPINダイオード対を用い、ダイオードに加えるドライバ回路からのバイアス電圧のオン/オフにより端部の反射係数を変えすることを利用した反射型である。各移相回路\(\pi/8, \pi/4, \pi/2, \pi \)は対応する走査制御信号（制御ビット）2\(^0\), 2\(^1\), 2\(^2\), 2\(^3\)が“1”のときにそれぞれ\(\pi/8, \pi/4, \pi/2, \pi \)（rad）の位相偏移がおき、”0”のときは移相量が0（rad）である。この結果、出力される位相偏移量は\(\pi/8 \)（rad）でステップ状に変化して0～15\(\pi/8 \)（rad）となる。

そこで、反射型移相器を発生する故障として2種類を想定した。1つは、移相回路に加えるバイアス電圧を生ずるドライバ回路の故障と、もう1つは移相回路の故障である。表1に移相器の故障内容および特性の測定結果を示す。

ここでは、これら故障のうち、移相器内の半導体部分としてPINダイオードが多く使用されていたことから、移相回路のPINダイオードの故障について検討した。PINダイオードのフォージは、測角の誤差解析を容易にするため、ダイオードの完全な短絡状態（以後、短絡故障）とダイオード2個の完全な開通状態（以後、開通故障）に限定した。

移相器の正常および故障状態のときの位相設定値に対する位相偏移特性と挿入損失を実測した一例を図4(a)～(c)に示す。いずれも、制御ビットは正常に入力されている。正常状態の場合、位相設定値に比例して位相偏移しており、移相器挿入損失は設定値全体にわたり小さく、ほぼ一定の2.5dBである。

次に、故障時の位相偏移、損失特性について述べる。(b)図が短絡故障、(c)図が開通故障である。両故障状態とも上段より\(\pi, \pi/2, \pi/4, \pi/8 \)の移相回路の故障を示す。

短絡故障の位相偏移特性は、制御ビットに“1”が入力しても故障している移相回路は位相偏移しない。例えば、(b)図の\(\pi \)移相回路が故障すると、制御ビット2\(^1\)が正常に入力しても、このビットに関係する位相設定値\(\pi \sim 15\pi/8 \)の区間は移相回路の位相偏移は見られない。
路が偏移しないため、移相器の位相偏移出力が0〜7π/8（rad）と異常な状態になる。
また、このときの挿入損失は、位相偏移の大きさ回路故障ほど増加することが分かる。π移相回路では、損失が約16dBと正常な場合より14dB程度増加する。π/8移相回路では正常値とはほとんど変わらない。

開放故障の場合、位相設定値全体に異常偏移出力を示す。π回路故障では、位相設定値0〜7π/8およびπ〜15π/8のときに位相偏移出力は約5π/12〜31π/24（rad）となる。即ち、設定値0〜7π/8で5π/12（rad）のバイアス分が加わり、π〜15π/8の範囲で設定値に対して7π/12（rad）分少ない。この理由として、開放故障は移相回路のPINダイオードを切り離したので、3dBカプラの不整合による位相偏移誤差を生じ、それがバイアス分として残留するためと考えられる。

開放故障の挿入損失は、どの回路故障も正常なときと同程度の3dB以下である。

3. 実験装置と実験方法

地上実験は、高低誘導装置を設置してある仙台空港近接する岩沼分室の実験用エプロンで行った。実験に用いた高低誘導アンテナは、放射素子62個、ビーム幅1.5°、サイドローブレベル-20dB以下、走査範囲0〜17.5°（但し、比例範囲0.9〜7.5°）である。

地上実験の計測システム・ブロック図を図5に示す。送信側は、高低誘導装置と基準位置測定装置（セオドレータおよびレーザ測距儀）で構成され、基準位置測定装置は走査アンテナから受信アンテナまでの仰角、方位角および水平距離を計測する。なお、位置測定装置の光軸は走査アンテナの位相中心高と一致させている。

図6 故障移相器が少ないときの測角誤差（実測値）
図7 故障位置による測角誤差（実測値）

受信側の着陸コース試験車は受信アンテナの高さを変えれるための伸縮マストを装備し、MLS 受信機およびデータ処理装置を搭載して受信地点まで移動する。MLS 受信機はデジタル測角信号、ビーム・エンベロープであるログ・ビデオ信号など出力し、データ処理装置はこれらの信号データと基準仰角データを収録し計算処理により測角誤差、受信電力を算出する。なお、基準仰角は位置測定装置のデータとマスト高から得る。

地上実験は受信位置として周辺構造物などの反射の影響の少ない、走査アンテナ正面方向（方位0°）、距離130 m地点を選んだ。送信側では、移相器の正常、π移相回路を開放、または短絡の故障状態に設定し、受信側でマスト先端に固定した受信アンテナの仰角を連続して変えて測角誤差特性を測定した。

移相器故障をπ移相回路に限定した理由は、位相偏移が最も大きいので、故障すると走査ビームの指向性に及ぼす影響が一番大きいと考えたためである。

次に、飛行実験は当所の実験用航空機B990にMLS受信機、ベンレコーダなどを搭載して、移相器正常および故障の場合の角度測定を行った。飛行コースは方位角0°の水平ラジアルを設定した。なお、航空機位置の基準には仙台空港のVOR／DMEを用いた。

4. 実験結果と検討

4.1 地上実験結果

地上実験では、故障移相器の状態、個数および位置が測角によると影響を調べた。

最初に、故障移相器が少ない場合として、2個の故障が電力分配比の比較的大きい位相中心（アンテナの中央）付近にあるときの測角誤差と電界強度を測定した。その結果を図8に示す。これより、開放故障では正常のときと較べて、電界強度が約0.5dB低く、変動幅は約1dBと2倍程度になった。測角誤差は仰角範囲0.9°～8°の2σ値（誤差変動幅を表し、測定値変動量の95%確率）
で約0.05°と正常と同じで小さい。また、短絡故障は斜角誤差も電界強度の変動幅も正常とはほぼ同じである。従って、この程度の故障では正常時と著しい差異はなく、測角器の影響は少ない。

図で、1点前線は仰角に対する誤差のICAO規定値を表し、これはビーム幅1.5°の高低進撃に要求される許容誤差1.12°（滑走路進入端から275m斜め方向にアンテナを設置すると仮定した場合のPFEE(Path Following Error)）より求めた。3

この結果から、さらに開放故障移相器の数を4個に増やし、4個連続を一箱とした故障位置を位相中心より上方に順次1つずつ移動して実験を行った。測定結果は故障移相器番号をパラメータとして図7に示す。移相器番号の設定は走査アンテナの放射素子が移相器の垂直方向に並んでいることから、最上端をNo1として、これより下に行くに従って番号が増えるように決まった。故障位置がNo28〜31はアンテナの位相中心付近で、図で分かるように上に行くほど2σ値は増大し、移相器番号No25〜28の故障では誤差の変動幅が最大10%〜20%大きく増えている。この誤差特性で仰角3〜4°付近の誤差は、ICAO規定値を越えるものがある。

また、電界強度の変動幅も同様に故障位置が上へ行くほど大きく、位相中心近いほど小さい。次に、移相器4個の故障は位置により測角誤差特性に変化があらわれたことから、この故障条件を幾つか変えて実験と対数のシミュレーション誤差計算で求めた側面誤差特性について比較する。

図8 移相器正常の側面誤差特性
（距離 = 130m 方位 = 0°）

移相器正常時の場合を図8に示す。実測値が実線で、計算値が点線である。2σ値は、実測値が計算値よりやや大きく、誤差変動幅も実測値が多少大きい。誤差変動の形状は一致しないが、これは、実測値の誤差は走査制御系の給電位相誤差や凹凸のある地面による反射など多重にノイズ的な要因があるためと考える。

図9、10は移相器の開放および短絡故障の結果である。図9の開放故障は、上から故障位置が位相中心より上部の移相器番号No19〜22、中心付近のNo29〜32、中心より下部のNo44〜47の誤差特性である。

No19〜22の実測値は、仰角方向に約0.5°の周期をもつ最大約2°の変動幅がある。計算結果でも実測と同様な傾向を示し、誤差変動の周波はほぼ一致する。この変動は面反射が原因で、受信仰角の移動に伴って走査ビームの直接波と反射波の相対位相差が2π周期で変化し、これらの合成で受信ビーム・エンベロープの歪みに弱弱がでて、誤差が増減する。

No44〜47の開放故障も誤差特性に大きな変動があるが、その形状は全く異なる。これは故障位置によって走査ビームのサイド・ローブの形が異なり、それが反射の影響を受けたものと考えられる。

図10の短絡故障の場合、No19〜22の誤差は、図9の同じ位置の開放故障と同様な周期の誤差が現われている。これらを較べると、誤差変動幅は1/2以下と小さく、2σ値も1/2程度である。計算結果は実測結果とはほとんど一致する。誤差の

—41—
小さい理由は、短絡した故障移相器の損失が開放
故障のときより14dB大きいためと考えられる。
即ち、故障移相器を通ってアンテナ素子から放射
する電力が小さくなり、ビーム形成に与える影響
が減少するためである。
次に、フィールド・モニタで受信される仰角4°
付近のビーム・エンベロープの実測結果を図11
に示す。図(a)が移相器正常時、図(b)が故障時の観

図9 開放故障の測角誤差特性
（距離 = 130m, 方位 = 0°）
測定波形である。なお、この波形は往復走査で生ずるトドマツとフローバルスのうち、フローバルスで観測したもので、横軸は時間である。故障状態はNo19〜22とNo29〜32の位置における開発および短絡故障である。ダイナミック・サイドロープのレベルは、正常時でビームの最大値より約20 d B低いが、故障時は全体に10〜16 d Bとレベルが上昇している。

ダイナミック・サイドロープとは、走査ビームを固定点で受信したときに生ずるエンベロープ波形のサイドロープであり、静止したアンテナ・パターンのサイドロープと波形が異なる(8)。

移相器を実験と同じ条件にしたときの受信ビーム・エンベロープの計算結果を図12(a)(b)(c)に示す。(a)図は正常時、(b)と(c)図は各々開発故障および短絡故障である。計算でもサイドロープの形状は実験と似たような傾向があらわれている。特に、位相中心付近の移相器故障のときは比較的高いサイドロープレベルがあらわれている。

しかし、図9(b)の故障結果が示すように、図8の正常の場合に比較すると、誤差は増加しているが、他の故障の場合、図9(a), (c)より誤差は1/2〜1/3と小さい。

移相器故障による測定誤差増加の原因には、走査ビームのひずみによるものと、サイドロープ・レベル上昇による地面反射の増加によるものがあったと考えられる。図9(b)は故障位置がアンテナの位相中心付近なので、走査ビームのひずみが小さく、サイドロープ・レベル上昇による誤差だけが増加したため、全体の誤差増加は少なくなくなる。他方(a), (b)の場合はサイドロープ・レベル上昇より走査ビームのひずみの影響が大きく、全体の誤差が大幅

図10 短絡故障の測定誤差特性
（距離 = 130 m, 方位 = 0°）

—43—
図11 受信ビーム・エンベロープ観測波形
（距離 = 130m, 仰角 = 4°, 方位 = 0°）

(b)に示す。[a]図は開放故障、[b]図は短絡故障の場合で、この横軸の故障位置は4個中一番小さい番号である。例えば、実測のプロットが移相器番号25なら故障範囲はNo.25～28である。

図より、開放、短絡故障共に計算結果は実測結果とよく一致している。また、誤差は両方の故障とも位相中心付近で最小となり、中心より上部お
図12 仰角4°の受信ビーム・エンベロープ計算結果

よび中心より下部の各中間付近で大きい。位相中心付近は、電力分配比が最も大きいにもかかわらず、測角誤差特性にはほとんど影響を与えないことから分かる。

また、両方の故障の誤差特性を比較すると、短絡故障の誤差が全体的に小さい。これは、前仰角と異なり、短絡故障のところで述べたように、短絡故障の位相器の挿入損失が14dBと大きいことに関係するようである。これを確かめるために、開放故障でも損失を短絡と同程度に増やして計算した結果、
図13 故障移相器が4個連続したときの誤差計算と実測値
（距離 = 130m, 方位 = 0°）

図14 水平ラジアル飛行の測角値

誤差は短絡故障と同じにだった。

ここで述べたシミュレーション計算の測角は、ドゥエル・ゲート方式によるものであるが、最近のMLS受信機ではスプリット・ゲート方式も用いられている。そこで、この方法による計算も行ってみた結果、測角誤差特性は両方式で大きな差がないことを確認した。

4.2 飛行実験結果

移相器が正常な場合とNo.25～28の開放故障における飛行実験結果を図14に示す。飛行コースは、高度2,000 ftと3,000 ftの水平ラジアルである。故障時の測角値は正常の場合より周期的な変動を示している。3,000 ftでは、受信仰角3°以下で
変動幅が地上実験の結果と同様に0.2°程度を測定した。このときの受信距離は8NM以上である。
この結果から、遠距離でも移相器故障があるときの測角変動は近距離と同程度に現われることが分
かる。

5. むすび

高低誘導走査アンテナで発生する故障として移相器の故障を解析および検討した。また、これに
基づき、π移相回路の故障に限定した移相器を実験用高低誘導地上装置に用いて地上実験および飛
行実験を行った。

その結果、移相器の故障位置と誤差の関係から、開放故障による誤差は短絡故障の場合より大き
いことが分かった。これは故障移相器の損失の差によるものと考えられる。また、開放、短絡故
障共に位相中心付近の位置で誤差の小さいことが分かった。飛行実験結果から、遠距離における移
相器故障による測角変動も近距離と同程度あることを見出した。

また、移相器故障のとき、受信ビーム・エンペ
ロープ波形はダイナミック・サイドロープレベル
が正常時より高くなる。この影響により測角誤差
は増加するが、それよりも移相器故障による走査
ビームのずれによる誤差の増加が大きいことが
分かった。

誤差シミュレーション・モデルにより、移相器
を実験と同じ故障条件にした計算結果は、実験結
果とほぼ一致することを確認した。これによって
移相器故障の誤差解析や誤差の大きさの予測が可
能となった。

以上の結果は、高低誘導システムの設計や保守
運用時のモニタ方式の検討に役立つと考えられる。

謝辞
仙台空港の実験に協力頂いた仙台空港事務所、
海上保安庁仙台航空基地ならびに電子航法研究所
岩沼分室の関係者、また、本研究に教示頂いた
当所片野研究企画官および実験などに協力頂いた
電子航法開発部の小瀬木、福田両研究官に謝意を
表します。

参考文献
(1) I C A O： "AERONAUTICAL TELE-
COMMUNICATIONS", Annex 10, Vol. 1
(April 1985)
(2) 片野，松本，朝倉，惟村："MLS高低誘導シ
システムの試作と測角実験"，電子航法研究所報
告，№49（1985－2）
(3) 松本，朝倉，惟村，片野："MLS高低誘導シ
システムの地上実験"，電子航法研究所報告，№5
3（1986－10）
(4) 惟村，松本，朝倉，片野："MLS高低誘導シ
システムの飛行実験"，電子航法研究所報告，№5
4（1987－3）
(5) Joseph F. White 著 鴨巢巳之助訳 佐藤源
貞監修："マイクロ波半導体応用工学"，CQ出版
(1985)
(6) H. W. Redlien, R. J. Kelly："Microwave
Landing System：The New International
Standard"，ADVANCE IN ELECTRONICS
AND ELECTRON PHYSICS, Vol.
57, Academic Press,（1981）
シミュレーション・モデルによる測角誤差の計算

走査アンテナのビーム方向 \(\theta_s \) に対する仰角 \(\theta_d \) （一定）の受信ビーム・レベルは、次式で表せる。

\[
E(\theta_s) = \sum_{n=1}^{N} A_n e^{jn(k \sin \theta_s - \sin \theta_d)}
\]

(\(k = 2 \pi d / \lambda \)

但し、\(A_n \) ：アンテナ素子の励振値幅
\(N \) ：全アンテナ素子数
\(n \) ：素子番号
\(d \) ：素子間隔
\(\lambda \) ：波長

式(1)の \(nk \sin \theta_s \) は、 \(n \) 番目のアンテナ素子に与えるビーム走査角に対応する給電位相であるから、\(n \) 番目の移相器の制御位相を \(\phi_{ns} \) とする。この \(\phi_{ns} \) は、移相器に入力する \(\pi \) ビットの走査制御信号で \(\pi / 8 \), \(\pi / 4 \), \(\pi / 2 \), \(\pi \) の各移相位角を動かしたもので、次のように表す。

\[
\phi_{ns} = A \cdot \frac{\pi}{8} + B \cdot \frac{\pi}{4} + C \cdot \frac{\pi}{2} + D \cdot \pi
\]

但し、\(A \sim D \)：走査制御ビット信号 (1, 0)

また、位相給電では実験に用いた電力分配器が2分割直列給電方式であるための位相遅れをもつので、この位相遅れの補正を走査制御信号で行う。位相遅れは、位相中心から上下に移動するほど1素子当たり約77°で増加する。

移相器故障の誤差は \(\pi \) 移相回路の故障に限るが、付図1に計算で用いる \(\pi \) 回路故障の移相器特性を示す。これは、本文図4の実測値を基にしたもので、移相器の製作による移相誤差は \(\pm 5^\circ \) 以下と小さいので無視した。図中、太枠が故障の場合を表わす。なお、故障移相器の損失は正常時に対する相対値を用い、短絡故障が14dB、開放故障で0dBに設定する。

誤差計算の方法を付図2の流れ図で示す。初期設定の入力パラメータが付表1である。

受信ビーム・エンベロープの計算は、受信アンテナの仰角を入力し、このときの地面反射角を求める。次に走査アンテナのビーム走査角を変えて直接波と反射波成分の合成受信電力を求める。走査ステップ角は \(0.1^\circ \) である。受信電力の算出は給電位相が関係するため、給電位相を移相器の故障パラメータで判定する。

測角誤差は受信ビーム・エンベロープの最大値からの\(-3 \)dB 幅の中心と仰角の差として求める。測角計算はドゥエル・ゲート処理方式である。誤差は仰角 \(0 \sim 8^\circ \) まで \(0.1^\circ \) 毎に求め、\(0.9 \sim 8^\circ \) の範囲で誤差の \(2 \sigma \) を算出する。

付図1 計算に用いる \(\pi \) 回路故障の移相器特性

---48---
付表1 シミュレーション計算パラメタ

<table>
<thead>
<tr>
<th>走査アンテナ特性</th>
<th>テーラー分布（(\bar{\eta} = 5)）</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>サイドローブ・レベル -30d B</td>
</tr>
<tr>
<td>アンテナ素子数</td>
<td>62個</td>
</tr>
<tr>
<td>アンテナ中心高</td>
<td>3 m</td>
</tr>
<tr>
<td>地面反射係数</td>
<td>-1</td>
</tr>
<tr>
<td>受信距離</td>
<td>130 m</td>
</tr>
</tbody>
</table>

初期入力パラメタ
距離、アンテナ高、
地面反射係数
移相器故障パラメタ

仰角 \(\theta_d \) を変えて繰返し
反射角 \(\theta_r \) を算出する

受信ビーム・エンベロープの計算

走査角 \(\theta_s \) を変えて繰返し
アンテナ給電位相を入力
受信電力を算出する

測角誤差を算出する
誤差の 2\(\sigma \) を算出する

付図2 構角誤差計算の流れ図