

GLONASS 信号におけるチャネル間バイアスの校正

 山田 英輝^{†a)}
 高須 知二^{††}
 坂井 丈泰[†]
 久保 信明^{††}

 安田 明生^{††}

Calibration of Inter-Channel Biases on GLONASS Signals

Hideki YAMADA^{†a)}, Tomoji TAKASU^{††}, Takeyasu SAKAI[†], Nobuaki KUBO^{††}, and Akio YASUDA^{††}

あらまし GPS と GLONASS の併用により、衛星測位における利用率を向上させることができる.一方で、 GLONASS 信号間にはチャネル間バイアスと呼ばれるハードウェアバイアスが存在する.このチャネル間バイ アスの影響により、異機種受信機間の GPS/GLONASS 複合 RTK 測位においては、測位性能を劣化させてし まう問題がある.この問題を解決するためには、GLONASS の搬送波位相観測値に含まれるチャネル間バイア スを校正する必要がある.本論文では、ゼロ基線における GLONASS のチャネル間バイアスの校正手法の検討 を行い、バイアスの校正が RTK 測位の性能の改善にどの程度有効であるかを評価した.具体的には、ゼロ基線 におけるバイアスの校正テーブル及び校正係数の算出方法を明らかにするとともに、これらの推定値の有効性に ついて従来の測位手法との比較評価を行った.実験の結果、大部分の受信機間において、ゼロ基線による校正手 法を適用することで、GPS/GLONASS 複合 RTK 測位の利用率が大幅に改善することを確認できた.

キーワード RTK, GNSS, FDMA

1. まえがき

衛星測位システム(GNSS)は、現在は米国の GPS だけでなく、ロシアの GLONASS がほぼ完全に運用 されている. GPS 及び GLONASS を併用した測位で は、GPS のみを用いる場合に比べて衛星測位におけ る利用率を高めることができる. RTK(Real Time Kinematic)測位とは、2 台の受信機を用いて cm クラ スの精度で位置を決定する精密測位技術の一つである. 同機種の受信機同士において、GPS 及び GLONASS を併用した RTK 測位(以下、GPS+GLONASS RTK 測位と呼ぶ)では、より多くの衛星数を確保すること ができ、これにより cm クラスの精度で測位する RTK 測位の利用率が高まる [1].

ただし一方で, GLONASS は衛星ごとに送信周 波数の異なる FDMA (requency Division Multiple

^{††} 東京海洋大学,東京都 Tokyo University of Marine Science and Technology, 2–1–6 Etchujima, Koto-ku, Tokyo, 135–8533 Japan Access) 方式を採用しているため、GLONASS の搬送 波位相観測値に各 GLONASS 衛星で固有のハードウェ アバイアスが生じる. このハードウェアバイアスのこ とをチャネル間バイアスと呼ぶ [2], [3]. 同機種の受信 機同士では, このチャネル間バイアスは計算の過程で 除去されることから問題とはならない.一方で,異機種 の受信機同士では、チャネル間バイアスは除去されず、 このバイアス誤差が RTK 測位の利用率を低下させる 問題がある.この問題を解決して GPS+GLONASS RTK 測位の利用率を高めるためには、GLONASS の 搬送波位相観測値に含まれるチャネル間バイアスを校 正する必要がある.本論文では、はじめに異機種の受 信機間におけるチャネル間バイアスについて述べると ともに、その校正手法を検討する. 更に、得られたバ イアスの推定値が RTK 測位における性能の改善にど の程度有効であるかを評価した結果を報告する.

本論文の構成は,まず,2.で GPS+GLONASS RTK 測位の概要について示す.3.ではチャネル間 バイアスの校正手法について示す.4.では,バイアス の校正実験を行い,RTK 測位におけるバイアスの推 定値の有効性について評価を行う.5.はむすびとする.

^{*} 電子航法研究所,調布市 Electronic Navigation Research Institute, 7-42-23 Jindaijihigashi-machi, Chofu-shi, 182-0012 Japan

a) E-mail: yamada@enri.go.jp

2. GPS+GLONASS RTK 測位

本章では、GPS+GLONASS RTK 測位計算アルゴ リズムとその問題点について説明する.

2.1 RTK 測位とアンビギュイティ決定

GNSS 衛星の測位信号によって得られる観測値には, コード擬似距離観測値(以下,コード観測値と呼ぶ) と搬送波位相観測値がある.式(1)及び式(2)にそれ ぞれの観測方程式(方程式の解は受信機の位置座標及 びアンビギュイティ)を示す[4],[5].上つき添字は衛 星番号を表す.下付き添字は受信機を表す記号である. $H_P^i, H_{\Phi}^i, H_{p,u}(f^i), H_{\Phi,u}(f^i)$ は次節に述べるチャ ネル間バイアスを意味する.

$$P_{u}^{i} = R_{u}^{i} + I_{u}^{i} + T_{u}^{i} + c \cdot (b_{u} - a^{i}) + H_{P}^{i} + H_{P,u}(f^{i}) + E_{P,u}^{i}$$

$$(1)$$

$$\Phi_{u}^{i} = (\lambda^{i})^{-1} \cdot (R_{u}^{i} - I_{u}^{i} + T_{u}^{i}) + f^{i} \cdot (b_{u} - a^{i}) + N_{u}^{i} + H_{\Phi}^{i} + H_{\Phi,u}(f^{i}) + E_{\Phi,u}^{i}$$
(2)

u:移動局を表す記号

i:衛星番号

P:コード観測値 [m]

- Φ :搬送波位相観測值 [cycle]
- c: 光速 [m/s]
- λ:搬送波の波長 [m]
- f:衛星の送信周波数 [Hz]
- R:受信機-衛星間の幾何学的距離 [m]
- *I*:電離層遅延量 [m]
- T:対流圈遅延量[m]
- E_p :コードマルチパス及び雑音 [m]
- E_Φ:搬送波位相マルチパス及び雑音 [cycle]
- b:受信機時計誤差 [s]
- a:衛星時計誤差 [s]
- N:搬送波位相アンビギュイティ[cycle]
- Hⁱ_P: 衛星側のコードのバイアス [m]
- $H_{p,u}(f^i)$:受信機側のコードのバイアス [m]
- H^i_{Φ} : 衛星側の搬送波位相のバイアス [cycle]
- $H_{\Phi,u}(f^i)$:受信機側の搬送波位相のバイアス [cycle]

各衛星の測位信号によって得られるコード観測値また は搬送波位相観測値の受信機間の差分を一重差と呼 ぶ.式(1)または式(2)に対して、一重差によって得 られる観測値及びモデルに付随するパラメータは通常, (\bullet)^{*i*}_{*uk*} = (\bullet)^{*i*}_{*u*} - (\bullet)^{*i*}_{*k*} と表す. コードー重差観測値また は搬送波位相一重差観測値では,対流圏遅延量,電離 層遅延量,衛星時計誤差,衛星側のチャネル間バイア スなどの観測誤差は除去される.次に,各衛星の一重 差観測値の差分を二重差と呼ぶ.二重差によって得ら れる観測値及びモデルに付随するパラメータは通常, (\bullet)^{*i*}_{*uk*} = (\bullet)^{*i*}_{*uk*} - (\bullet)^{*j*}_{*uk*} と表す.式(3)及び式(4) にそ れぞれコード二重差及び搬送波位相二重差の観測方程 式[4],[5] を示す.

$$P_{uk}^{ij} = R_{uk}^{ij} + H_{P,uk}(f^{i}) - H_{P,uk}(f^{j}) + E_{P,uk}^{ij} \quad (3)$$

$$\Phi_{uk}^{ij} = (\lambda^{i})^{-1} \cdot R_{uk}^{i} - (\lambda^{j})^{-1} \cdot R_{uk}^{j} + (f^{i} - f^{j}) \cdot b_{uk}$$

$$+ N_{uk}^{ij} + H_{\Phi,uk}(f^{i}) - H_{\Phi,uk}(f^{j}) + E_{\Phi,uk}^{ij} \quad (4)$$

k:基準局を表す記号

j:RTK 測位における基準衛星の番号

GPS では全衛星の送信周波数が等しいので,二重 差により受信機時計誤差を除去することができる. 一方,GLONASS では衛星間で送信周波数が異な るため,式(4)においては,受信機時計誤差の一重 差 b_{uk} が残ることとなる.GLONASS の b_{uk} は, GLONASS コードー重差観測値を利用した最小二 乗法またはカルマンフィルタにより推定できる[6]. また,GPS では,式(3)の $H_{p,uk}(f^i) - H_{p,uk}(f^j)$ (以後, $H_{p,uk}(f^i, f^j) = H_{p,uk}(f^i) - H_{p,uk}(f^j)$ と する)及び式(4)の $H_{\Phi,uk}(f^i) - H_{\Phi,uk}(f^j)$ と する)は - 重差により除去できる.

受信機で取得される搬送波位相観測値は、ある瞬間 における位相角の積算値を測定したものである.し たがって,式(4)より,受信機-衛星間の絶対的な距 離を算出するためには,残りの不明な波数 N を知る 必要がある.この不明な波数のことをアンビギュイ ティと呼ぶ.式(4)におけるアンビギュイティの二重 差 N_{uk}^{ij} は整数であり,整数化[7]によって確からしい 推定解 N_{uk}^{ij} が得られる. N_{uk}^{ij} を確からしく推定した 後は,得られた推定解 N_{uk}^{ij} の妥当性を検査(以下,ア ンビギュイティ検定[8]と呼ぶ)する.この検査をパ スすることによって初めて,妥当とされる N_{uk}^{ij} が決 定される.決定した N_{uk}^{ij} の利用により式(4)におけ る位置座標を解くことで,RTK 測位における位置の 解(以下,Fix 解と呼ぶ)が得られる.

2.2 チャネル間バイアスによる影響

異機種の受信機間における RTK 測位においては, GLONASS の $H_{\Phi,uk}(f^i, f^j)$ の小数部分によって, 妥 当な Fix 解が得られなくなる問題がある. 具体的に, $H_{\Phi,uk}(f^i, f^j)$ の整数部分については, 式 (4) を満たす ように N_{uk}^{ij} の推定値が整数分だけ変化するので, Fix 解の決定性能に影響を与えない. しかし, $H_{\Phi,uk}(f^i, f^j)$ の小数部分については, N_{uk}^{ij} における整数分の調整で は除去できないので, Fix 解の決定性能に影響を与え ることになる.

このような GLONASS の問題点に基づき,本節で ははじめに,GLONASS の $H_{\Phi,uk}(f^i, f^j)$ について 整理する.GLONASS 測位信号の通信方式は FDMA 方式であるため,各 GLONASS 衛星間で送信周波数 は異なる.式 (5)に GLONASS 衛星の送信周波数を 示す [9].

$$f^{i} = f_{0} + K^{i} \cdot \Delta f \tag{5}$$

f₀:GLONASS 衛星の中心送信周波数 [Hz]

(L1 で 1602 MHz, L2 では 1246 MHz) Kⁱ: *i* 番 GLONASS 衛星の周波数番号

 $(K^i = -7 \sim 6)$

Δf:サブバンド周波数 (L1 では 0.5625 MHz, L2 で 0.4375 MHz)

アンテナで受信された GLONASS 信号が受信機内部の 高周波回路を通過する際に、回路遅延時間に送信周波 数に応じた差を生じる.この信号間の回路遅延時間の 差は, GLONASS のコード観測値及び搬送波位相観測 値にチャネル間バイアスとして存在する[5],[10],[11]. ただし, 同機種受信機間では, 受信機間のハードウェ アの構造及び回路遅延時間がほぼ同一であるため、一 重差によりバイアスを除去できる [2], [11], [12]. 一方 で,ハードウェアの構造が異なる受信機間では,一重 差によりバイアスを除去できない.本論文では以後, 「チャネル間バイアス」は GLONASS 搬送波位相観測 値に存在するチャネル間バイアスのことを指す. 一方 で,GLONASS コード観測値に存在するチャネル間 バイアスを「コードバイアス」と呼ぶ. これまでの実 験結果[10],[13]から、コードバイアスの大きさは数十 cm から数 m 程度であるのに対して、チャネル間バイ アスの大きさは数 cm から数十 cm 程度である.チャ ネル間バイアスの時間的な変動は、大部分の受信機機 種では安定である [14].

図 2 異機種受信機間 GPS+GLONASS RTK 測位結果 (従来の測位手法)

Fig. 2 Fix solutions of GPS+GLONASS RTK between different type receivers.

表 1 評 価 条 件 Table 1 Evaluation conditions.

Date	2009-12-23 24 h (epoch intervals:30 s)		
Measurements	Single-frequency carrier and code phase		
Ambiguity	Epoch by epoch [15]		
resolution	LAMBDA [5], Ratio test(threshold: 3) [8]		
Filter	Kalman filter		
Baseline length	300 m		
Rover receivers	NovAtel,JAVAD		
Base receivers	NovAtel,JAVAD,Trimble,Topcon		
Rover antenna	NovAtel		
Base antenna	Trimble		

図1にNovAtel 社-NovAtel 社製の受信機間におけ るGPS+GLONASS RTK 測位のFix 解の例を示す. 図2にNovAtel 社-Trimble 社製の受信機間における GPS+GLONASS RTK 測位(文献 [10])のFix 解の 例を示す.縦軸は東西方向(E-W),南北方向(N-S), 上下方向(U-D)のFix 解の測位誤差を表し,原点は 測量で得られた正確な位置を意味する.また,表1に このときの評価条件を示す.RTK 測位の性能評価方 法としては,RTK 測位の利用率を定義する.RTK 測 位の利用率は,(Fix 解が得られた観測時間/全観測時 間)×100(%)と定義して,本論文ではFix 率と呼ぶ. また,文献[10]は,式(3)におけるコードバイアスの みを校正した従来の GPS+GLONASS RTK 測位の 手法である.したがって,文献[10]の測位手法では, 式(4)のチャネル間バイアスは校正していない.

図 1 の GPS+GLONASS RTK 測位の Fix 率は 87%, RMS 誤差は E-W: 0.01 m/N-S: 0.01 m/U-D: 0.01 m であった. このときの RTK-GPS の Fix 率は 57%, RMS 誤差は E-W: 0.04 m/N-S: 0.06 m/U-D: 0.19 m であったので,図 1 より,GLONASS 衛星の 追加は RTK-GPS 測位の性能改善に有効であるといえ る.図 1 と比較して,図 2 の GPS+GLONASS RTK 測位の Fix 解のプロット数は減少していることが分か る.図 2 の Fix 率は 52%であった.図 2 において Fix 解のプロット数が減少している理由は,異機種受信機 間で生じるチャネル間バイアスの影響と考える.

3. チャネル間バイアスの校正

測量においては、基準局と移動局アンテナ間の長さ を基線長(baseline)と呼ぶ.アンテナが同一,すな わち基線長がゼロの基線のことをゼロ基線と呼ぶ.ゼ ロ基線テストは、一般的に受信機雑音の大きさを評価 するために使用されるが、コードバイアスを校正する 手法としても有用である[10].単純なゼロ基線の二重 差により、受信機-衛星間の幾何学的距離を除去でき るため、コードバイアスと受信機雑音のみを抽出でき る.一方で、チャネル間バイアスについては、アンビ ギュイティを処理する必要があるので、単純なゼロ基 線の二重差では校正できない.本論文では、ゼロ基線 によるチャネル間バイアスの校正手法について明らか にする.

3.1 従来手法

GLONASS のチャネル間バイアスを校正するため には、二つの方法がある.二つの方法は、(i)バイアス を直接測定する方法[5],[16],(ii)フィルタでバイアス を推定する方法[14],[17],[18]に分類できる.(ii)の方 法では、GLONASSの搬送波位相二重差観測モデル に関し、バイアスが周波数に対して一次式で近似でき るものとしてバイアスの校正係数(GLONASS 衛星 の周波数番号とバイアスとの関係を表す係数)を未知 パラメータに加えて、未知パラメータをフィルタで推 定する.(ii)の方法では、バイアスの校正係数の推定 と同時に、アンビギュイティもフィルタで推定しなけ ればならず、推定すべきパラメータが増えてしまう問 題がある.したがって、バイアスの校正係数及びアン ビギュイティの推定精度を上げるために,GPSのコー ド及び搬送波位相観測モデルも使用する.

しかし,ゼロ基線及び短基線においては,アンビ ギュイティをフィルタで直接推定及び決定せず,更に GLONASS の1 周波観測モデルを用いるだけで,バ イアスの校正を簡便に実施できる.同様の手法でバイ アスを校正した例もあるが[13],手法については詳し く述べられていない.

3.2 ゼロ基線における校正手法の検討

本論文では、ゼロ基線における GLONASS の 1 周 波観測モデルのみを用いたチャネル間バイアスの校正 手法を明らかにする.はじめに、チャネル間バイアス は式 (6) のように表せる.式 (6) では、GLONASS の 受信機時計誤差 b_{uk} をフィルタで推定する.受信機の 精密な位置は既知とする.

$$H_{\Phi,uk}(f^{i}, f^{j}) = H_{\Phi,uk}(f^{i}) - H_{\Phi,uk}(f^{j})$$

$$= \Phi_{uk}^{ij} - \{(\lambda^{i})^{-1} \cdot R_{uk}^{i} - (\lambda^{j})^{-1} \cdot R_{uk}^{j}\}$$

$$- (f^{i} - f^{j}) \cdot b_{uk} - N_{uk}^{ij} - E_{\Phi,uk}^{ij}$$

$$(6)$$

$$= \overline{\Phi_{uk}^{ij}} - N_{uk}^{ij} - E_{\Phi,uk}^{ij}$$

式 (6) の $\overline{\Phi_{uk}^{ij}}$ は Φ_{uk}^{ij} から $R \ge b_{uk}$ を取り除いた値で あるので、 $\overline{\Phi_{uk}^{ij}}$ に含まれる成分はチャネル間バイアスと アンビギュイティとノイズである. したがって、式 (7) のように、 $H_{\Phi,uk}(f^i, f^j)$ の小数部分は $\overline{\Phi_{uk}^{ij}} - \left[\overline{\Phi_{uk}^{ij}}\right]$ と表せる.

$$H_{\Phi,uk}(f^i, f^j) - [H_{\Phi,uk}(f^i, f^j)] \approx \overline{\Phi_{uk}^{ij}} - \left[\overline{\Phi_{uk}^{ij}}\right]$$
(7)

[X]:X を超えない最大の整数

更に式 (7) を変形することで、 $H_{\Phi,uk}(f^i, f^j)$ は式 (8) のように表せる.

$$H_{\Phi,uk}(f^i, f^j) \approx \overline{\Phi_{uk}^{ij}} - \left[\overline{\Phi_{uk}^{ij}}\right] + \left[H_{\Phi,uk}(f^i, f^j)\right]$$
(8)

式 (8) において,整数 $[H_{\Phi,uk}(f^i, f^j)]$ は **2.2** で述べ たように RTK 測位におけるアンビギュイティの推定 値に吸収される.したがって, $\overline{\Phi_{uk}^{ij}} - \left[\overline{\Phi_{uk}^{ij}}\right]$ の値を 用いるだけで GLONASS の搬送波位相二重差観測値 に含まれるチャネル間バイアスを校正できる.

3.3 校正テーブルの導出

次に, $\overline{\Phi_{uk}^{ij}} - \left[\overline{\Phi_{uk}^{ij}}\right]$ をGPS+GLONASS RTK 測位

に適用するためには, $K^i - K^j$ における $H_{\Phi,uk}(f^i, f^j)$ の校正テーブルを作成する必要がある. このとき, ゼロ基線テストでは,特定の衛星を観測できる時間帯は限られる. したがって,いくつかの基準衛星番号における $H_{\Phi,uk}(f^i, f^j)$ のテーブルを結合することで, $K^i - K^j$ における $H_{\Phi,uk}(f^i, f^j)$ を推定できる.

3.4 校正係数の導出

 $H_{\Phi,uk}(f^i, f^j)$ の校正テーブルと比較して, $H_{\Phi,uk}(f^i, f^j)$ の校正係数を求めることは情報量の 観点で意味がある.式(5)の送信周波数が K^i に関 する一次式で表せるので,同様に,式(9)のように $H_{\Phi,uk}(f^i, f^j)$ も $K^i - K^j$ に関する一次式(前述した バイアスの校正係数)で近似できる.

$$H_{\Phi,uk}(f^{i}, f^{j}) \approx \beta \cdot (K^{i} - K^{j})$$
$$\approx \overline{\Phi_{uk}^{ij}} - \left[\overline{\Phi_{uk}^{ij}}\right] + \left[H_{\Phi,uk}(f^{i}, f^{j})\right]$$
(9)

式 (9) の β がバイアスの校正係数(単位:cycle/ channel)である. 式 (9) より, $\overline{\Phi_{uk}^{ij}} - \left[\overline{\Phi_{uk}^{ij}}\right]$ が $K^i - K^j$ に関する一次式となるような $\hat{H} = \{[H_{\Phi,uk}(f^i, f^j)],$ $i = 1 \dots n, j = a \text{ fixed number}\}$ を探す. 次に, $\overline{\Phi_{uk}^{ij}} - \left[\overline{\Phi_{uk}^{ij}}\right]$ を \hat{H} だけシフトさせることで, $H_{\Phi,uk}(f^i, f^j)$ の校正係数 β が推定できる. 図 3 は, $K^i - K^j$ (ただし, $K^j = 0$) における $\overline{\Phi_{uk}^{ij}} - \left[\overline{\Phi_{uk}^{ij}}\right]$ (図 中の × 印) をプロットしたものである. $K^i = K^j = 0$ のときの $\overline{\Phi_{uk}^{ij}} - \left[\overline{\Phi_{uk}^{ij}}\right]$ の値は 0 である. 図 3 より, この受信機間においては, $\overline{\Phi_{uk}^{ij}} - \left[\overline{\Phi_{uk}^{ij}}\right]$ を \hat{H} だけシ フトすることで, $H_{\Phi,uk}(f^i, f^j)$ が直線に近似できる (図中の黒丸) ことが分かる.

βの推定では、直線の傾きが急な場合(βの整数部

Fig. 3 Linear approximations of inter-channel carrier biases.

分の絶対値が1以上)においては, \hat{H} の探索範囲が 広がるため探索は困難に見えるが,大部分の実在する 受信機間では, β が1を超えることはない[14].しか も実際は, 2.2 で述べたように β の整数部分は RTK 測位におけるアンビギュイティの推定値に吸収される ので,校正係数の小数部分を推定できればよい.した がって, \hat{H} の探索は困難にならないといえる.

3.5 チャネル間バイアスの推定精度

式(6)における b_{uk} は、受信機間の GLONASS コードー重差観測値のみを用いて最小二乗法で毎時刻推定する。ただし、各 GLONASS のコードバイアスについては推定していないが、各 GLONASS コードー重差観測値の最小二乗法によってコードバイアスの影響を低減できると考える。

このように $H_{\Phi,uk}(f^i, f^j)$ を推定する際には, GLONASS のコードー重差観測値を使用するので, $H_{\Phi,uk}(f^i, f^j)$ の推定精度について評価する必要が ある. GLONASS のコード観測値に含まれるマルチ パス及び受信機雑音の大きさを 0.3 m [12] とすると, コードー重差により 0.3 m × $\sqrt{2} = 0.4$ m まで増大さ れる. また, コードバイアスのおおむねの大きさを 0.6 m [10] とすると, GLONASS のコードー重差観測 値の精度は $\sqrt{(0.4)^2 + (0.6)^2} = 0.7$ m となる. b_{uk} の TDOP [4] を 0.9 とすると, b_{uk} の推定精度は約 0.63 m (2.1015 × 10⁻⁹ 秒) となる. 今, GLONASS の L1 周 波数について考える場合, $f^i - f^j$ の最大値は 7.5 MHz となる. したがって, $(f^i - f^j) \cdot b_{uk}$ で生じる最大誤 差の絶対値は 3.2 mm (0.016 cycle) 程度となる.

4. 校正実験

本章では,ゼロ基線におけるチャネル間バイアスの 校正手法の妥当性及び有効性について評価する.

4.1 校正実験とその結果

表2に本論文のゼロ基線テストで使用する受信 機及びデータ取得環境を示す.図4に受信機間別の

表 2 ゼロ基線テストにおける実験環境

Table 2An experimental environment on zero-baseline
test.

Receiver	JAVAD	NovAtel	Topcon	Trimble
Maker(Type)	(Legacy)	(OEMV)	(NET-G3)	(R7GNSS)
Antenna	Trimble (Zephyr 2) / Baseline length:zero			
Site	Tokyo University of Marine and Science			
	Technology (Open sky)			
Data	Single-frequency measurements			
Date	2009-12-23, about 24 h (epoch intervals:30 s)			

図 4 GLONASS のチャネル間バイアス Fig. 4 GLONASS inter-channel carrier biases.

表 3 GLONASS のチャネル間バイアスの推定値(単位: cycle)

Table 3	Measured values of GLONASS inter-channel
	carrier biases (unit: cycle).

Freq	NovAtel -Trimble	NovAtel -Topcon	NovAtel -JAVAD	JAVAD -Trimble	JAVAD -Topcon
-7	1.1569	0.8993	0.8742	0.2757	0.0193
-4	0.6653	0.5093	0.4991	0.1646	0.0183
-3	0.5034	0.3826	0.3725	0.1250	0.0151
-2	0.3393	0.2544	0.2586	0.0946	0.0102
0	0	0	0	0	0
2	-0.3324	-0.2474	-0.2346	-0.0823	-0.0031
3	-0.4964	-0.3725	-0.3730	-0.1411	-0.0013
4	-0.6664	-0.5109	-0.4815	-0.1673	-0.0245
5	-0.8010	-0.6290	-0.6124	-0.2100	-0.0503
6	-0.9688	-0.7556	-0.7406	-0.2544	-0.0204

表 4 GLONASS のチャネル間バイアスにおける校正係 数 β (単位:cycle/channel)

Table 4Calibration factor for GLONASS inter-channel
carrier biases (unit: cycle/channel).

	NovAtel	NovAtel	NovAtel	JAVAD	JAVAD
	-Trimble	-Topcon	-JAVAD	-Trimble	-Topcon
Calibration factor	-0.1696	-0.1272	-0.1293	-0.0473	-0.0051

 $H_{\Phi,uk}(f^i, f^j)$ の推定結果を示す. 横軸は GLONASS 衛星間の周波数番号の差 $K^i - K^j$ (ただし, $K^j = 0$) を表す. 縦軸は $H_{\Phi,uk}(f^i, f^j)$ の推定値を表す. ただ し, 図4の $H_{\Phi,uk}(f^i, f^j)$ の整数部分は,整数サイク ルのシフト操作を適用した値である. 図4より,本論 文で扱う受信機の組合せにおいては, $H_{\Phi,uk}(f^i, f^j)$ は明らかに $K^i - K^j$ に対して直線上に存在すること が分かる. また,表3に, $K^i - K^j$ (表中の Freq に 相当) における $H_{\Phi,uk}(f^i, f^j)$ の校正テーブルを示す. 表3のバイアス値は,整数サイクルのシフト操作を適 用したバイアス値の約1時間分の平均から算出してい る.表4に, $H_{\Phi,uk}(f^i, f^j)$ の校正係数を示す.表4

図 5 異機種受信機間 GPS+GLONASS RTK 測位結果 (チャネル間バイアス校正後)

Fig. 5 Fix solutions of GPS+GLONASS RTK between different type receivers after calibration of inter-channel carrier biases.

の校正係数で得られた $H_{\Phi,uk}(f^i, f^j)$ の推定値と表 3 の校正テーブルで得られた推定値の間の差は 0.01~ 0.03 cycle 程度であり、大部分の受信機間における校 正係数の算出方法は妥当といえる.

4.2 RTK 測位への適用

前節で, $H_{\Phi,uk}(f^i, f^j)$ の校正テーブル及び校正係 数を算出できることを確認した.次に,これらの校 正手法を RTK 測位に適用することで,どの程度の 測位性能の改善に寄与するかを明らかにする.また, 従来の測位手法[10]に対して,本論文で提案する校 正手法がどの程度の優位性があるのかも明らかにす る.具体的には,表1と同じ評価条件のもとで,従 来の測位手法[10]と比較して, $H_{\Phi,uk}(f^i, f^j)$ の校正 テーブル(Table Method)と校正係数(Proportional Method)が RTK 測位の性能の改善にどの程度の有 効性があるのかを評価する.

図5 に, $H_{\Phi,uk}(f^i, f^j)$ の校正係数を適用した NovAtel 社-Trimble 社製の受信機間 GPS+GLONASS RTK 測位の Fix 解の1 日分の測位結果を示す. 図2 における従来の測位手法による Fix 解のプロット数 と比較して,図5 における $H_{\Phi,uk}(f^i, f^j)$ 補正後の Fix 解のプロット数は大幅に増加していることが分 かる.表5 に,各測位モードにおける受信機間別の GPS+GLONASS RTK 測位の Fix 率及び測位精度 (RMS 誤差)を示す. $H_{\Phi,uk}(f^i, f^j)$ の校正テーブルま たは校正係数を適用した RTK 測位では,大部分の受信 機の組合せにおいて,従来の測位手法及び RTK-GPS 測位 [10] と比較して,Fix 率及び測位精度の大幅な改 善を示している.また,表5より,校正テーブル及び 校正係数のどちらも同程度のFix 率及び測位精度の改

	No Calibration	Table Method	Proportional
	[10]		Method
Combination	Fix rate	Fix rate	Fix rate
Comonation	E-W/N-S/U-D	E-W/N-S/U-D	E-W/N-S/U-D
	accuracy (m)	accuracy (m)	accuracy (m)
NovAtel-	52 %	80 %	79 %
Trimble	0.05/0.07/0.11	0.01/0.02/0.05	0.01/0.02/0.05
NovAtel- Topcon	47 %	80 %	80 %
	0.07/0.09/0.15	0.03/0.05/0.10	0.03/0.05/0.10
NovAtel- JAVAD	34 %	67 %	69 %
	0.11/0.18/0.35	0.07/0.04/0.13	0.06/0.03/0.11
JAVAD- Trimble	37 %	62 %	62 %
	0.10/0.11/0.30	0.06/0.08/0.18	0.06/0.08/0.18
JAVAD-	69 %	69 %	69 %
Topcon	0.04/0.06/0.14	0.05/0.07/0.15	0.05/0.07/0.15

表 5 GPS+GLONASS RTK 測位の Fix 率及び測位精度 Table 5 Fix ratios and position accuracies of GPS+GLONASS RTK.

善が見られる.今回, $H_{\Phi,uk}(f^i, f^j)$ を直線でよく近似できたため, $H_{\Phi,uk}(f^i, f^j)$ の2種類の校正手法の間で,Fix率及び測位精度の改善に差がほとんど見られなかったといえる.

4.3 GLONASS 周波数番号による影響

3.5 では、buk とチャネル間バイアスの推定に及ぼ すコードバイアスによる誤差の影響の大きさを一定と したが、実際には同時刻に見える GLONASS 衛星の 周波数番号配置により、この大きさは変わる。例えば、 同時刻において各周波数番号が正負に幅広く配置され る場合では、buk の推定値に加わるコードバイアスに よる誤差の影響が小さくなるので、結果としてチャネ ル間バイアスの推定精度は良好となることが考えられ る。本節では、実際の周波数番号配置とチャネル間バ イアスの推定精度との関係の例により、最低でどの程 度の観測時間があればチャネル間バイアスを校正でき るかを考察する。

図6に表2の実験環境におけるGLONASSの周波 数番号の時間的推移を示す.図6より,周波数番号が 偏る時間帯は10000~14000秒付近(周波数番号+3, +5,+6)であった.14000秒以降では周波数番号-4 の信号を受信し,その受信前後ではチャネル間バイアス の推定値の間で差を生じることを確認した.これは各 衛星の周波数番号が正負に分布したことによりチャネ ル間バイアスの推定条件が改善したためと考えられる. 具体的には,校正係数の推定値の差は0.4 mm/channel 程度(0.002 cycle/channel)であり,校正テーブルの 推定値の差は1.6 mm 程度(0.008 cycle)であった.し

図 6 GLONASS 周波数番号の時間的推移(1日分) Fig. 6 Time shifts of GLONASS frequency numbers for a day.

かし、これらの各校正手法におけるチャネル間バイア スの推定値の差は RTK 測位の性能に差を与えるもの ではなかった.したがって、校正係数を推定する際に は、わざわざ周波数番号配置が正負に分布する時間帯 がくるのを待つ必要はない.ただし、時間平均により 推定値に含まれる雑音成分を除去する必要はあるので、 少なくとも 30 分程度の実験データの取得が必要と考 える.一方で、校正テーブルを作成する上では、図 6 より明らかなように、30 分程度のデータ量ではテーブ ルの一部しか作成できないので、できれば 24 時間程 度のデータが必要といえる.

5. む す び

本論文では、GLONASSのチャネル間バイアスにお けるゼロ基線による校正手法の検討とその評価を行っ た.まず、ゼロ基線テストによりチャネル間バイアス の校正テーブル及び校正係数を算出した。チャネル間 バイアスの校正手法は、コードバイアスの校正手法と 比較して、異機種受信機間 GPS+GLONASS RTK 測 位に有効であることが明らかとなった。また、チャネ ル間バイアスの校正係数を用いた GPS+GLONASS RTK 測位の Fix 率及び測位精度は、チャネル間バイ アスの校正テーブルを用いた場合と比較しても、ほと んど同等であることを示した。したがって、チャネル 間バイアスをよく直線にモデル化できる場合は、校正 テーブルよりも校正係数を測位に適用する方が情報量 の観点から効率的といえる。

今後の課題としては、アンテナ機種の変化や高周波 回路周辺の温度変化・経年変化がバイアスの校正係数 に与える影響の評価が挙げられる.また、現状では校 正係数の与え方は受信機の組合せごとであるので、今 後は受信機ごとに校正係数を与える方法を検討したい.

謝辞 本研究において、ゼロ基線テストで使用する

データの取得実験にあたり,実験に協力頂いた株式会 社アムテックス,株式会社トプコン,株式会社ニコン・ トリンブル,東京大学の海老沼拓史氏に感謝の意を 示す.

文 献

- R.B. Ong, M.G. Petovello, and G. Lachapelle, "Assessment of GPS/GLONASS RTK under various operational conditions," Proc. ION GNSS 2009, pp.3297–3308, Savannah, Sept. 2009.
- D. Kozlov, M. Tkachenko, and A. Tochilin, "Statistical characterization of hardware biases in GPS + GLONASS receivers," Proc. ION GPS 2000, pp.817–826, Utah, Sept. 2000.
- [3] T. Felhauer, "On the impact of RF front-end group delay variations on GLONASS pseudorange accuracy," Proc. ION GPS 97, pp.1527–1532, Missouri, Sept. 1997.
- [4] P. Misra and P. Enge, Global positioning system: Signals, measurements, and performance, 2nd ed., Ganga-Jamuna Press, 2006.
- [5] P. Raby and P. Daly, "Using the GLONASS system for geodetic survey," Proc. ION GPS 93, pp.1129– 1138, Utah, Sept. 1993.
- [6] D. Kozlov and M. Tkachenko, "Instant RTK cm with low cost GPS+GLONASS C/A receivers," Proc. ION GPS 97, pp.1559–1569, Kansas City, Missouri, Sept. 1997.
- [7] P.J.G. Teunissen, "The least-square ambiguity decorrelation adjustment: A method for fast GPS ambiguity estimation," J. Geodesy, vol.70, pp.65–82, 1995.
- [8] P.J.G. Teunissen and S. Verhagen, "On the foundation of the popular the ratio test for GNSS ambiguity resolution," Proc. ION GNSS 2004, Long Beach, pp.2529-2540, Sept. 2004.
- [9] Russian Institute of Space Device Engineering: GLONASS ICD ed. 5.1, Moscow, 2008.
- [10] H. Yamada, T. Takasu, N. Kubo, and A. Yasuda, "Evaluation and calibration of receiver inter-channel biases," Proc. ION GNSS 2010, pp.1580–1587, Portland, Sept. 2010.
- [11] J. Sleewagen, A. Simsky, W.D. Wilde, F. Boon, and T. Willems, "Demystifying GLONASS Inter-Frequency Carrier Phase Biases," InsideGNSS, May/June 2012.
- [12] L. Wanninger and S. Wallstab-Freitag, "Combined processing of GPS, GLONASS, and SBAS code phase and carrier phase measurements," Proc. ION GNSS 2007, pp.866–875, Texas, Sept. 2007.
- [13] H. Yamada, T. Takasu, T. Sakai, N. Kubo, and A. Yasuda, "Performance improvement of RTK-GPS/GLONASS with the calibration tables of interchannel biases," Proc. ENC GNSS 2011, pp.1–12, London, Nov. 2011.
- [14] L. Wanninger, "Carrier-phase inter-frequency biases

of GLONASS receivers," J. Geodesy, pp.139–148, Aug. 2011.

- [15] M. Pratt, B. Burke, and P. Misra, "Single-epoch integer ambiguity resolution with GPS L1-L2 carrier phase measurements," Proc. ION GPS 1997, pp.1737–1746, Kansas City, Sept. 1997.
- [16] S. Yudanov, V. Varyukhin, S. Sila-Novitskiy, and J. Ashjaee, US Patent application number: 20100164798, July 2010.
- [17] A. Boriskin and G. Zyryanov, "Algorithms to calibration and compensate for GLONASS biases in GNSS RTK receivers working with 3rd party networks," Proc. ION GNSS 2008, pp.376–384, Georgia, Sept. 2008.
- [18] A. Al-Shaery, S. Zhang, and C. Rizos, "An enhanced calibration method of GLONASS inter-channel bias for GNSS RTK," GPS Solution, May 2012.
 - (平成 24 年 10 月 9 日受付, 25 年 3 月 11 日再受付)

山田 英輝

2006 東京海洋大・工卒.2011 同大大学 院博士課程了.2011 電子航法研究所研究 員.現在,GNSS/SBAS 測位アルゴリズ ム全般に関する研究に従事.

高須 知二

東京海洋大学産学連携研究員.精密測 位アルゴリズム (PPP, RTK)の研究に 従事.

坂井 丈泰 (正員)

1996 早稲田大学大学院修士課程了.同 年電子航法研究所入所.現在,同所主幹研 究員.2002~2003 米国スタンフォード大 客員研究員,2006~東京海洋大客員准教 授.衛星測位システムの航空機応用に関す る研究に従事.2006 IEEE AES 優秀論文

賞,2007 米国航法学会 ION GNSS 優秀論文賞.博士(工学).

久保 信明 (正員)

1998 北海道大学大学院了.同年 NEC 入 社. その後,東京商船大学(現東京海洋大 学)に転職し,現在,東京海洋大学准教授. 現在,GPS/GNSS の都市部での精度向上, マルチパス誤差低減技術の開発に従事.

安田 明生 (正員:フェロー)

1966 名工大卒.1972 名大大学院博士課 程了.同年,名古屋大学工学部助手.1975 東京商船大学助教授.1987 同教授.2003 東京海洋大学教授.現在,東京海洋大学特 任教授,主な研究領域は GPS/GNSS 分野 全般.