

- QZSS Overview
 - Services
 - System Architecture
 - Development Status
- 2. Recent Development
 - QZSS Performance
 - SBAS Service and Experiments
 - QZSS Satellite Information
- 3. International Cooperation
- 4. Summary

- 1. QZSS Overview
 - Services
 - System Architecture
 - Development Status
- 2. Recent Development
 - QZSS Performance
 - SBAS Service and Experiments
 - QZSS Satellite Information
- 3. International Cooperation
- 4. Summary

11

QZSS Overview -System-

- Constellation:
 - 1 GEO Satellite, 127E
 - 3 QZO Satellite (IGSO)

Ground System

- 2 Master Control Stations
 - Hitachi-Ota and Kobe
- 7 Satellite Control Stations
 - Located south-western islands
- Over 30 Monitor Stations around the world

Cabinet Office National Space Policy Secretariat

Contents 1. QZSS Overview Services System Architecture Development Status 2. Recent Development QZSS Performance SBAS Service and Experiments QZSS Satellite Information 3. International Cooperation 4. Summary

- 1. QZSS Overview
 - Services
 - System Architecture
 - Development Status

2. Recent Development

- QZSS Performance
- SBAS Service and Experiments
- QZSS Satellite Information
- 3. International Cooperation
- 4. Summary

23

QZSS Performance -PNT Service-

Performance (SIS Accuracy)

[Specification] less than 2.6m(95%)

[Evaluation (2018/5/11~ 2018/5/17)]

QZS-1: 0.61m(95%), QZS-2: 1.11m(95%), QZS-3: 0.96m(95%), QZS-4: 1.01m(95%)

The improvement by the tuning

In order to improve SIS Accuracy (i.e. orbit error and clock error), parameters in our estimation engine were adjusted.

, National Space Policy Secretariat

QZSS Performance -CLAS Service-

Recent Test results (mobile use)

- Evaluated from positioning results earned from a mobile vehicle mounting both general RTK and CLAS receivers in open-sky condition maneuver.
- $\boldsymbol{\cdot}$ Difference between CLAS positioning results and RTK positioning results are evaluated (defined as error figures)
- Error is evaluated by content (direction),

the graph shows error figures by time transition, the table shows statistical figures

National Space Policy Secretariat

Error content (Direction)	cm (rms)
East-West	2.0
North-South	1.8
Vertical	4.2

- 1. QZSS Overview
 - Services
 - System Architecture
 - Development Status
- 2. Recent Development
 - QZSS Performance
 - SBAS Service and Experiments
 - QZSS Satellite Information
- 3. Summary

DFMC SBAS Experiment

- DFMC (Dual-Frequency Multi-Constellation) SBAS
 - International standard augmentation system using L5 signal.
 - ➤ Following L1 single-frequency single-constellation SBAS.
 - Eliminates ionospheric effects dramatically.
 - > Vertical guidance service everywhere in the coverage.
 - Allows SBAS signal transmission from non-GEO (IGSO) satellites.
 - > Improved SBAS signal availability in polar regions and urban canyons.
- MPAT is now conducting DFMC SBAS Experiment
 - The first L5 SBAS experiment with live L5 signal from the space.
 - Using QZSS L5S signal transmitted from GEO and IGSO satellites.
 - The prototype DFMC SBAS for experiments has been developed.
 - > GPS/GLONASS/Galileo/QZSS-capable dual-frequency SBAS.
 - > Compliant with the draft ICAO L5 SBAS SARPS.
 - Began the initial test on 23 Aug., 2017 using L5S signal (PRN 196) of QZS-2 IGSO.
 - > Expects participation to this experiments. Contact: <sakai@mpat.go.jp>

- 1. QZSS Overview
 - Services
 - System Architecture
 - Development Status

2. Recent Development

- QZSS Performance
- SBAS Service and Experiments
- QZSS Satellite Information
- 3. International Cooperation
- 4. Summary

39

QZSS Satellite Information

 Considering ICG WG-D recommendation and IGS White Paper, Satellite Property Information (SPI) and Operational History Information (OHI) for each QZS SV was published on our website.

http://qzss.go.jp/en/technical/qzssinfo/index.html

- Following info are included;
- ■Satellite Property Information(SPI)
- Reference Frame
- Attitude Law
- Mass and Center of Mass
- Navigation Antenna Phase Center Corrections
- Geometry
 - Satellite dimension
- Optical Property
- Laser Retro Reflector Location
- Differential Code Bias

- ■Operational History Information(OHI)
- Attitude Change history
 - mode/start·end
- Orbit maintenance maneuver history

 The Advantage (dalls) (dalls a time)
 - time/duration/delta-V/direction
- · Estimated mass history

Cabinet Office
National Space Policy Secretariat

- 1. QZSS Overview
 - Services
 - System Architecture
 - Development Status
- 2. Recent Development
 - QZSS Performance
 - SBAS Service and Experiments
 - QZSS Satellite Information
- 3. International Cooperation
- 4. Summary

41

International Collaboration

JP-US

- Continuous discussion on Interference Mitigation on L1C/A
- Cooperation on Ground Segment (Monitoring Site) for future extension

□ JP-EU

- Cooperation Agreement relative to Satellite Navigation Applications between Japan (National Space Policy Secretariat, Cabinet Office) and EU (DG-Glow, European Commission) was established on March 8, 2017.
 - · Annual Round Table and Working Group discussions
 - Emergency Warning Services, Autonomous driving and 3D mapping, E6/L6 signals, DFMC SBAS, Knowledge sharing about Operations
- Current Activities
 - · Definition of common EWS message format is on going.
 - Galileo-QZSS joint EWS trial in Australia was successfully completed on 19 Sept.
 - Joint working team activity will begin soon: Joint R&D activity on DFMC SBAS supporting IGSO SBAS concept will be planned.

Summary

- QZSS is Japanese regional satellite navigation system to improve not only GNSS availability but also accuracy and reliability.
 - 4 satellite constellations: Three IGSO and one GEO satellites.
 - Three consecutive launches have successfully been conducted in 2017; All four satellites are now ready on their orbits.
- Operational Service begins on November 1, 2018.
 - GPS complement service, GNSS augmentation service including SBAS, and messaging service.
 - Precise positioning service can be utilized in many applications with Multiple GNSS as well as multi-sensors.
 - Some experiments including DFMC SBAS and PPP are also ongoing.

Backup: IGSO SBAS Concept

- DFMC SBAS could be transmitted by non-GEO satellites like QZSS IGSO.
- Transmission from the Zenith: Improves availability of augmentation signals where GEO signal is blocked.
 - > Polar regions, mountain area, urban canyons, building on the south side, approaching aircraft, and so on.

