
Modified Ionospheric Correction Algorithm 

for the SBAS 

Based on Geometry Monitor Concept 
 

 

Takeyasu Sakai, Keisuke Matsunaga, and Kazuaki Hoshinoo, Electronic Navigation Research Institute, Japan 

Todd Walter, Stanford University, USA 

 

 

 

BIOGRAPHY   

 

Takeyasu Sakai is a Senior Researcher of Electronic 

Navigation Research Institute, Japan. He received his Dr. 

Eng. in 2000 from Waseda University and is currently 

analyzing and developing ionospheric algorithms for 

Japanese MSAS program. He is a member of the MSAS 

Technical Review Board of JCAB. 

 

Keisuke Matsunaga is a Researcher of Electronic 

Navigation Research Institute. He received his M. Sc. in 

1996 from Kyoto University and worked for the 

development of LSI at Mitsubishi Electric Corporation 

from 1996 to 1999. He joined ENRI in 1999, and is 

currently studying ionospheric scintillation effects on 

MSAS. He is a member of the MSAS Technical Review 

Board of JCAB. 

 

Kazuaki Hoshinoo is a Principal Researcher of Electronic 

Navigation Research Institute. He is the director of MSAS 

research program in ENRI and is a member of the MSAS 

Technical Review Board of JCAB. He chairs Ionosphere 

Working Group of the Board. 

 

Todd Walter is a Senior Research Engineer in the 

Department of Aeronautics and Astronautics at Stanford 

University. Dr. Walter received his PhD. in 1993 from 

Stanford and is currently developing WAAS integrity 

algorithms and analyzing the availability of the WAAS 

signal. 

 

ABSTRACT  

 

The ionospheric correction procedure of the current 

MSAS, Japanese version of SBAS/WAAS, is built on the 

algorithm called as ‘planar fit’. It estimates the 

ionospheric propagation delays at IGPs using the first 

order estimator, relates to ‘plane’, and the storm detector 

is implemented to determine if there is storm condition or 

not to protect users from large correction errors. The 

previous study has shown that the algorithm works 

relatively well over Japan although the absolute delay is 

large due to geomagnetic effects. 

 

A potential problem is, however, the fact that the 

distribution of residual errors after planar fit removal is 

not Gaussian, which is assumed in the storm detector 

algorithm of MSAS/WAAS. During storm conditions, the 

availability of ionospheric corrections for MSAS tends to 

lower significantly due to trip of storm detector even the 

actual error is small. 

 

Another problem is that the current storm detector 

determines ionospheric conditions based on the observed 

residuals. This approach, dependent upon observations, 

cannot avoid undersampling threat; We never observe 

where observation does not exist. In fact, chi-square 

statistics implicitly expects a good geometry of 

observations. A small chi-square value does not guarantee 

that the actual error distribution is normal due to a 

possible undersampling situation. 

 

The authors will introduce geometry monitor concept to 

overcome these problems. Using an appropriate metric 

indicating goodness of the geometry of observations, it is 

possible to bound the actual error by a function of the 

metric. The relative centroid metric (RCM) and condition 

number metric (CNM) are evaluated for this purpose. 

These metrics can also be applied to determine which 

model, or the order of fit, is better for fit. Employing an 

adaptive fit algorithm based on the geometry monitor, the 

availability of the ionospheric corrections improves from 

70-80% to over 99%. Missed detection conditions are 

eliminated with little enlargement of GIVE values. 

 

INTRODUCTION 

 

Japan has been developing its own satellite-based GPS 

augmentation system called MSAS (MTSAT satellite-

based augmentation system) since 1993 [1]. The MSAS is 

developed primarily for civil aviation purpose so it shall 

broadcast radiosignal based on the international standard 



developed and defined by ICAO (international civil 

aviation organization). SBAS (satellite-based augmen-

tation system) is ICAO standard of the wide area 

augmentation system which augments GPS using 

additional signals transmitted from geostationary satellites 

[2][3]. As an international standard system, Japanese 

MSAS is compatible with US WAAS and European 

EGNOS. SBAS receiver shall work with any of these 

systems. 

 

Following the failure of MTSAT-1 launch in 1999, 

MTSAT-1R geostationary satellite was successfully 

launched in February 2005. MTSAT means multi-

functional transport satellite, because it has weather and 

aviation missions. For aviation users, MTSAT provides 

transponder channels both of satellite communications 

including the automatic dependent surveillance (ADS) 

function as well as voice, and MSAS navigation datalink. 

MTSAT-1R is functional on the geostationary orbit at 

140E and, so far, MSAS is under test procedures. 

 

The major problem for SBAS is the ionosphere. The 

SBAS ionospheric correction messages and procedure 

defined in SARPs documents [2] were actually developed 

based on the observation and knowledge on the 

ionospheric activities over the US CONUS. In fact, the 

ionosphere has the significant activities in the equatorial 

regions in contrast to a case of CONUS located in the 

relatively high magnetic latitude region. The equatorial 

anomalies affect as the large-scale structure of electron 

density of ionosphere which might be difficult to be 

eliminated by SBAS ionospheric correction messages [4]-

[6]. Plasma bubble effects (also known as depletion), 

usually occur also in the low latitude region, might cause 

significant scintillation which disrupts GPS signals [7]-

[10]. 

 

The ionospheric delay problem is currently the largest 

concern for MSAS program. In early 2004 the MSAS 

Technical Review Board of JCAB (Japan Civil Aviation 

Bureau) established an Ionosphere Working Group for 

this problem. Supporting such activities, the authors are 

investigating the ionospheric effects over Japan to predict 

and improve the actual performance of MSAS on the 

ionosphere. 

 

The authors have already introduced quadratic fit in order 

to improve correction performance and zeroth fit for 

better availability of ionospheric corrections [6]. Zeroth 

order fit can be performed even only a few measurements 

are available, so it can save 5-6 percent of IGPs during a 

severe ionospheric condition such as October 2003 storm. 

Second order fit, i.e., quadratic fit, can improve the 

estimation accuracy up to 12 percent in RMS sense, with 

a good geometry of IPP measurements. 

 

In this paper the authors will firstly review the 

performance of the current planar fit algorithm for the 

SBAS over Japan. The potential problem here is the fact 

that the distribution of residual errors of planar fit is not 

Gaussian. The current storm detector based on chi-square 

statistics does not work well in such conditions, leading 

quite a lot of false alarm conditions and, more 

significantly, missed detection conditions. 

 

Another problem is that the current storm detector 

determines ionospheric conditions based on the 

distribution of observed residuals. This approach relies on 

observations, so cannot avoid undersampling threat. In 

fact, chi-square statistics implicitly expects a good 

geometry of observations. A small chi-square value does 

not guarantee that the actual error distribution is Gaussian, 

or normal, due to a possible undersampling situation. 

 

The authors will introduce geometry monitor concept to 

overcome these problems. Our original purpose is not to 

identify cases of storm conditions; It is just necessary to 

control GIVE values to bound actual user errors within 

the associate protection level regardless if there is a storm 

condition or not. If there is possibility that the ionosphere 

causes a large user error, the MCS must set large GIVE 

values to protect users even there is no storm condition. 

 

Using an appropriate metric indicating goodness of the 

geometry of observations, it is possible to bound the 

actual error by a function of the metric. The relative 

centroid metric (RCM) and condition number metric 

(CNM) are evaluated for this purpose. These metrics can 

also be applied to determine which model is better for fit. 

Employing an adaptive fit algorithm based on the 

geometry monitor, the availability of the ionospheric 

corrections improved from 70-80% to over 99%. Missed 

detection conditions are eliminated with little enlargement 

of GIVE values. 
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Figure 1. Planar fit algorithm for SBAS ionospheric 

delay estimation. The current algorithm is the first 

order planar fit. 



 

STANDARD PLANAR FIT FOR SBAS 

 

First of all, let us review the performance of the standard 

planar fit within the service area of the MSAS. Here we 

employ the planar fit procedure explained in [11]. 

 

The dataset of ionospheric delay observations during both 

quiet and stormy geomagnetic conditions are prepared for 

this purpose. Data source is GEONET network operated 

by Japan's Geographical Survey Institute, which equips 

over a thousand stations distributed in Japan. All stations 

in the network have dual-frequency survey-grade GPS 

receivers and provide their measurements at every 30 

seconds in the RINEX format. Pseudorange observations 

at 26 stations are converted into ionospheric delay dataset 

with removal of interfrequency biases [12][13]. Note that 

the dataset is based on only code phase pseudorange 

measurements instead of ambiguous carrier phase 

measurements, in order to avoid any ambiguities and 

cycle slips corrupting ionospheric analysis. Time-domain 

smoothing filter were applied to reduce multipath errors. 

 

Figure 2 shows the distribution of observation stations 

involved in the dataset. Note that all stations used in this 

analysis belong to the GEONET. Evaluating the perfor-

mance of planar fit, the dataset was divided into two 

parts; (i) IPP measurements: observations measured by 

MSAS-like 6 stations (Monitor Stations; red stations in 

Figure 2) are used as IPPs for generating fitting ‘plane’; 

and (ii) IGP measurements: observations at the other 20 

stations (User Stations; green stations in Figure 2) are 

used as pseudo-IGPs for evaluating how the ‘plane’ is 

good or bad, so never used as estimation sources. Because 

SBAS must bound the user positioning error at any 

(unknown) user location, we need to evaluate its 

performance using these User Stations which provide true 

measurements at the pseudo-IGPs, other than Monitor 

Stations. Planar fit was performed at each pseudo-IGP 

and evaluated by the difference between the ‘plane’ and 

true measurement at the pseudo-IGP (called ‘residual’). 

Hereinafter, IPP and IGP represent Monitor and User 

measurements, respectively, as described here. 

 

Using planar model, the vertical ionospheric delay at an 

IGP is estimated by [11]: 
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Figure 3 represents a histogram plot of residual errors for 

all user measurements during November 2004 storm. 

RMS of residual error was 0.982 meter while the largest 

error was 20.1 meters. Large errors below –10 meters 

occurred on the southern ocean near the edge of the 

MSAS service area. Such a histogram is typical during 

severe storms. 

 

The Current Storm Detector 

 

Integrity is the most important requirement for SBAS, so 

the bounding information of corrected pseudoranges is 

broadcast to users. For ionospheric corrections, the MCS 

broadcasts GIVE value for this purpose. The current 

algorithm computes GIVE values based on the formal 

variance of the least square fit with the assumption that 

the distribution of residual errors is normal, so it needs to 

determine whether each IGP is in storm condition or not. 

The ‘storm’ condition means the distribution of residual 

errors is possibly not normal. 

 

The formal variance of the least square fit of Eqn. (1) is 

given by: 
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Figure 2. Distribution of observation sites for the 

dataset. 
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and the bounding variance at the IGP is: 
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where a coefficient outside blanket is so-called inflation 

factor, and 
decorr

σ  denotes inherent uncertainty of the fit 

plane. )3(2 −n
p

χ  is the thresholds for chi-square statistics 

as a function of the degree of freedom (the number of 

observations minus the number of unknowns). According 

to procedure to compute protection levels, defined by 

SARPs [2], the actual correction error must be bounded 

by IGPbound ,
ˆ33.5 σ  anywhere and anytime. Now we can 

define the normalized residual error as: 
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Clearly it gives an example that integrity of the system 

cannot be maintained if this normalized residual error 

exceeds 5.33 at somewhere in the service area. 

 

The current storm detector determines whether an IGP is 

in storm condition or not based on the chi-square statistics 

of the observations, 
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compared with the threshold, ( )32

1
−

−

n
FAP

χ . If chi-square 

statistics is larger than this threshold, the IGP is 

determined to be in storm condition and the associate 

GIVE value is set to the maximum in order to protect 

users from a possible large error. 

 

If chi-square is less than the threshold, which means the 

IGP can be expected not in storm condition, SBAS 

computes the associate GIVE value by Eqn. (3). Note that, 

however, small chi-square does not guarantee that the 

actual error is bounded by the GIVE value, due to 

possible undersampling situation. 

 

In fact, during a severe storm condition in November 

2004, chi-square metric (chi-square statistics divided by 

the associate threshold) was distributed as shown in 

Figure 4. Each IGP is determined to be in storm condition 

if this metric is greater than 1. The missed detection 

condition occurred frequently with a large residual error 

which associates with chi-square metric less than 1, while 

 

Figure 3. Histogram plot of the residual errors of 

planar fit during November 2004 storm. No storm 

detector applied. 

 

 

Figure 4. 2-D histogram plot representing the 

residual errors versus chi-square metric during 

November 2004 storm. Each IGP is determined as 

being storm state if the associate chi-square metric 

is greater than 1. 



a small residual error with chi-square metric greater than 

1 means the false alarm condition. A missed detection 

condition threatens integrity of the system while the false 

alarm conditions lower availability of the system. 

 

The variance computed by Eqn. (3) bounded the actual 

residual errors during the period other than severe storm, 

for example, as Figure 5 shows. However, there were a lot 

of false alarm conditions which sacrifice the availability 

of the system. Now we know that the current design of 

MSAS might be a kind of conservative. 

 

Undersampling Problem 

 

In the evaluation above, planar fit was performed only 

with Monitor measurement and resulted estimation of IGP 

vertical delay is compared with User measurements. 

Because there are only 6 Monitor stations in the service 

area of the MSAS, Monitor measurements are often 

sparse relatively to the mid-scale structure of ionosphere 

so ionosphere might not be well-sampled. One cannot 

detect any structures unless it is sampled. 

 

Figure 6 displays a snapshot of the spatial distribution of 

ionospheric delays during November 2004 storm. Monitor 

stations observed smooth ionosphere (Top); But, in fact, 

there was mid-scale structure that some user stations 

certainly experienced (Bottom). Such unobservable 

structures may cause large errors leading missed detection 

conditions; This is the undersampling problem. 

 

Unfortunately our storm detector cannot detect such a 

situation. The chi-square statistics does not reflect the 

geometry of IPPs. The chi-square statistics is actually a 

criteria for ‘sampled’ data but not for ‘sampling’ process. 

A chi-square test detects invalidity (not validity) of the 

assumption that the associate samples are taken from the 

population of normal distribution; It implicitly expects a 

good sampling geometry. 

 

 

Figure 5. 2-D histogram plot representing the 

residual errors versus chi-square metric during 

active ionospheric condition. There are a lot of false 

alarm conditions. 

 

 

Figure 6. Ionospheric observations measured by 

(Upper) MSAS-like 6 monitor stations; and (Bottom) 

all 26 stations. Blue spots at the center of the bottom 

plot are not observed by MSAS-like stations. 



 

Figure 7 explains two sampling situations. A chi-square 

test can detect a situation such that the model for fit does 

not match to the actual ionosphere; The chi-square 

statistics becomes large with well-sampled observations. 

However, it might fail to detect undersampling situation 

such as shown in the right of the figure; The associate chi-

square statistics can be small if the mid-scale structure is 

not sampled enough. 

 

The fact is that we cannot observe ‘hole’ of IPP 

measurement distribution and never know what is there. 

There may be unobservable mountain, valley, or wave-

like structure in any hole missing measurements but the 

MCS cannot capture them. Here is a threat against 

integrity of the system. 

 

GEOMETRY MONITOR CONCEPT 

 

One possible way to eliminate undersampling threat is 

monitoring the geometry of IPPs being used for fit based 

on the empirical knowledge. It is possible to assume a 

small correction error if IPPs are distributed with a good 

geometry, so that MCS can broadcast small GIVE value 

in order to maintain availability. Meanwhile, with poor 

geometry, the MCS cannot reduce GIVE value because 

there is a certain possibility that the associate correction 

information makes a large user error. This approach still 

arises false alarm conditions, but, at least, will reduce 

missed detection conditions due to undersampling. 

 

The characteristics of the ionosphere around the service 

area must be well-characterized by off-line analysis of 

historical storm state observations. For this analysis, 

observations should not be limited to those collected by 

SBAS monitor stations because we must capture any 

structures threatening integrity of the system. GEONET 

network, which has a thousand sites in Japan at every 20-

30 km separation and holds 30-second sampled 

observations for a decade, is quite useful for this type of 

analysis. 

 

Some analyses have already been done and available 

[7][10][14]. It was reported that a gradient of vertical 

ionospheric delay up to 40 mm/km was observed during 

storm conditions [7]. And there was wave-like structure 

traveling from southwest to northeast [10]. A part of such 

structures might be captured by SBAS monitor stations 

but some of them would cause missed detection 

conditions with small chi-square statistics. 

 

Recall that our original purpose is not to identify cases of 

storm conditions. It is necessary to control GIVE values 

to bound actual user errors within the associates 

protection level regardless if there is a storm condition or 

not. If there is possibility that the ionosphere cause a large 

user error, the MCS must set large GIVE values to protect 

users even there is no storm conditions. 

 

The storm detector concept is built on the assumption that 

the distribution of correction errors is normal. This is 

actually a fact over US CONUS during geomagnetic quiet 

condition. The chi-square metric detects storm conditions 

which means this assumption is not valid. A large chi-

square statistics implies possibility of a large user error, 

but a small chi-square statistics does not guarantee that 

the actual error is bounded by the GIVE value based on 

the formal variance, as Figure 4 says. 

 

We need storm detector which determine if there is a 

storm condition or not because of the assumption that the 

distribution of residual error is normal. If there is an 

appropriate function bounding residual errors regardless if 

there is a storm condition or not, we do no longer need 

storm detector which lowers availability of the system. 

Such a function might be dependent only upon the 

geometry of the IPPs. Here the authors considered of two 

metrics indicating goodness of the geometry. 

 

Relative Centroid Metric (RCM) 

 

The relative centroid metric (RCM) [15] is the distance 

between IGP and weighted centroid of IPPs divided by 

planar fit radius. This metric is based only on the 

geometric distribution of IPPs used for fit, so independent 

from measured delays and the order of fit. Clearly, RCM 

varies between 0 and 1. 

 

The weighted centroid is given by: 
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Figure 7. Two sampling situations; (Left) Well-

sampled but large chi-square; (Right) under-sampled 

but small chi-square. 



where λIPP,i and φIPP,i denote the longitude and latitude of 

the i-th IPP. 

 

Figure 8 shows the distribution of residual errors with 

respect to the associate RCM. In contrast with case of chi-

square metric shown in Figure 4, residual error is well-

bounded if RCM is small. It is important fact that a large 

residual error is possible only if the RCM is greater than 

0.5. 

 

Condition Number Metric (CNM) 

 

The authors have already introduced the condition 

number as a metric to determine the order of fit [5][6]. 

The condition number of a matrix is mathematically 

defined as the ratio of the largest singular value of the 

matrix to the smallest one. It is known that any linear 

equations can be solved by singular value decomposition 

(SVD) and the stability of the solution relates to the 

condition number of the design matrix, i.e., the left-hand-

side of the equation. 

 

Any matrix A can be decomposed into the form of: 

 
T
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where S is a diagonal matrix whose components are 

singular values of matrix A. The theory of SVD says that 

the equation bx =A  can be solved as bx
1

⋅=
− T
UVS . 

Comparing with Eqn. (1), the design matrix A here is: 
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where matrix R is Cholesky decomposition of matrix W, 

i.e., T
RRW ⋅= . Note that matrix G has columns as many 

as the number of unknowns, 3 for the first order and 6 for 

the second, thus the condition number is dependent on 

both the geometry of IPPs and the order of fit. The 

number of singular values is also equal to the number of 

unknowns. 

 

We can measure the stability of Eqn. (1) through the 

condition number obtained as 
minmax
ss , i.e., the largest 

singular value divided by the smallest. The estimated 

ionospheric delay might be unstable if the associate 

condition number is large. Eqn. (1) is formally over-

determined if 3>N  for the first order fit, but at the same 

time it may be under-determined due to poor geometry of 

observations. For example, in case that all IPPs are 

distributed on one side of the IGP, Eqn. (1) becomes an 

extrapolation which might introduce a large error. 

 

The condition number metric (CNM) is always positive 

up to 100 for the first order fit while becomes thousands 

for second order fit. Figure 8 also gives an example of the 

distribution of the CNM. 

 

DETERMINATION OF MODEL 

 

The authors have already introduced higher and lower 

order fits, i.e., quadratic and zeroth, to improve accuracy 

and availability of the correction information, respectively 

[6]. Both RCM and CNM could determine which model 

should be used for fit with a given geometry to achieve 

lower residual error. 

 

Quadratic Model 

 

In the low magnetic latitude region, the spatial 

distribution of ionospheric delays may not be modeled 

properly by a planar model. There are usually equatorial 

anomaly and/or large-scale structures not fit to the first 

order plane. Figure 6 also gives an example that quadratic 

fit might be adequate. 

           

 

Figure 8. 2-D histogram plot representing the residual errors versus (Left) relative centroid metric; and (Right) 

condition number metric; during a severe storm. Compare with Figure 4. 



 

Quadratic fit requires 6 parameters to be estimated instead 

of 3 for planar fit. This means that quadratic fit lowers the 

degree of freedom in order to estimate additional 3 

parameters, so there is a tradeoff relationship between 

degree of freedom and the order of fit. We need to 

determine which model is better for each IGP without true 

measurement. This decision shall be made based on the 

geometry of IPPs along our approach. 

 

Note that user receiver algorithms do not need to change 

even in case that SBAS MCS employs quadratic fit to 

estimate vertical ionospheric delay at an IGP. Changing a 

model of ionosphere here influences only estimation 

process in the MCS. User receivers should still compute 

corrections with the standard bilinear interpolation 

defined by SARPs [2]. 

 

Figure 9 gives an evidence to determine the order of fit. 

The RMS and the maximum of residual errors are plotted 

with respect to the threshold of geometry monitor metrics. 

Both horizontal and vertical axes mean cumulative values. 

Data coverage means the number of IGPs whose metric is 

less than the associate threshold divided by the number of 

whole IGPs; For example, data coverage of 0.5 means the 

threshold such that planar fit is performed for 50% of 

IGPs with metrics smaller than the threshold. Solid, 

broken, and dotted lines represent cases of Nmin = Nmax 

= 30, 20, and 10, respectively. Note that even CNM will 

differ from each other for the different number of 

observations, with horizontal axis of data coverage we 

can compare the performance of each case directly. 

 

It can be said that there are the thresholds for RCM and 

CNM that quadratic fit can provide smaller residual errors 

than planar fit does for 80% of IGPs. But above the 

thresholds, residual error possibly becomes large. 

 

Figure 9. Residual error versus threshold of the metrics, RCM (Red) and CNM (Green), during severe storms. Planar 

or quadratic fits are performed if the associate metric is less than the threshold. Note that both horizontal and vertical 

axes mean cumulative values, and the metrics are indicated through the coverage of data. Solid, broken, and dotted 

lines represent cases of Nmin = Nmax = 30, 20, and 10, respectively. 



Quadratic fit reduces the largest error for cases of N>20, 

but otherwise, the largest error also becomes large due to 

insufficient degree of freedom. 

 

Decreasing the Number of Observations 

 

In case such that the spatial distribution of ionospheric 

delays is as displayed in Figure 6, there are cases that the 

fit radius should not become large. For such a condition, 

the MCS might decrease the number of IPPs used for fit 

to improve the estimation performance. However, Figure 

9 implies that one should use more IPPs to avoid a large 

residual error which cannot be bounded by GIVE value. 

 

There is another way to decrease observations effectively. 

Deweighting observations based on the distance from the 

IGP reduces the effective fit radius. IPPs far from IGP 

have smaller weights so that the estimation depends more 

upon IPPs near the IGP. If there are less observations near 

the IGP, the weights of outer observations increase 

relatively so the effective number of IPPs is maintained at 

a certain level. 

 

To deweight an observation, simply it is necessary to 

decrease the diagonal components of matrix W. Here we 

deweight the observation exponentially to the distance: 
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where di is the distance between IPP and IGP, and D is a 

space constant. For non-diagonal components of W, 

similarly, 
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might be employed. 

 

 

Figure 10. Residual error versus threshold of geometry monitor metrics during severe storms with space constant of 

D=500 km. Planar or quadratic fits are performed if the associate RCM (Red) or CNM (Green) is less than the 

threshold.  



Figure 10 shows the relationship between residual errors 

and the metrics computed for D = 500 km during October 

2003 and November 2004 storms. Comparing with Figure 

9, large residual errors with less number of observations 

are eliminated. For the first order fit, RMS of residual 

errors is reduced with any N; This fact means that there 

are structures with the spatial scale smaller than the 

maximum radius Rmax = 2100 km. There is a certain 

threshold of the CNM for quadratic fit which bounds 

residual errors up to 6 meters and provides RMS residual 

better than planar fit does both for 60 % of IGPs. 

 

The authors would like to note that Kriging algorithm 

developed in the field of geostatistics actually has a kind 

of mechanism similar to this deweighting. Kriging 

provides the estimation of a plane with the optimal 

weighting to the observations based on the variogram of 

the observations, which mathematically equals to 

covariance function. With the variogram computed 

dynamically from realtime observations, Kriging 

implicitly changes fit radius adaptively. This is the 

optimal estimation theoretically, however, unfortunately 

cannot overcome undersampling effects; In order to avoid 

integrity break due to undersampling, we cannot depend 

upon the realtime observations. In this context, Kriging 

should be performed with stationary variogram based on 

the worst storm condition. 

 

Applying Zeroth Fit for Poor Geometry 

 

Based on Figure 10, the MCS can determine the order of 

fit to improve RMS performance, with protecting users 

against the largest residual error observed historically. If 

the geometry of IPPs is good enough, quadratic fit gives 

the best performance. Otherwise planar fit will be chosen. 

But, at least for 10% of IGPs, planar fit cannot bound the 

largest residual error greater than 12 meters. We still must 

protect users from such conditions by giving up doing 

planar fit; We should yet decrease the order of fit and 

keep degree of freedom. 

 

As the authors previously reported, the zeroth order fit 

can be performed in case that the number of IPPs is 

insufficient in order to improve availability of the 

ionospheric corrections [6]. The zeroth order fit means 

actually simple weighted average so this is robust 

estimation. For poor geometry with CNM not enough to 

perform planar fit, even if the number of IPPs is sufficient, 

we should switch to zeroth order fit and avoid a large 

residual error introducing integrity break. 

 

For zeroth order fit, CNM is not defined because for such 

a case there is only one singular value. Uncertainty 

introduced by zeroth fit depends upon the distance to the 

IPPs due to the first order component that zeroth order fit 

cannot remove, so RCM is also not adequate to describe 

the geometry for zeroth fit. 

 

For these reason, Figure 11 illustrates residual errors of 

zeroth fit with respect to the fit radius metric (FRM) and 

the distance to centroid metric (DCM) instead of CNM 

and RCM. FRM means the largest distance to the IPP 

used for fit while DCM is the distance to the weighted 

centroid, i.e., these are the denominator and the numerator 

of RCM, respectively. During severe storms, DCM gives 

performance better than FRM. DCM can bound residual 

errors up to 6 meters for 50% of IGPs and the largest was 

15 meters. 

 

Figure 11. Residual error versus threshold of 

geometry monitor metrics for zeroth fit. Metrics 

plotted here are (Green) fit radius metric; and (Red) 

distance to centroid metric. 



 

ADAPTIVE FIT PROCEDURE 

 

Now we have three models to fit ionosphere and the 

associate geometry monitor metrics to measure the 

goodness of geometry. Our goal here is implementing the 

adaptive fit algorithm based on the geometry. First, it is 

necessary to consider of bounding function. 

 

Even without the assumption that the distribution of 

residual error is normal, residual error still must be 

bounded by broadcast GIVE values. One possible way to 

set GIVE values properly is using a maximum possible 

residual involved in historical observations during storm 

conditions. For this approach, it is necessary to find an 

appropriate function providing the upper bound of 

residual errors. The geometry monitor metrics introduced 

above sections have a certain relationship to the largest 

residual error, so we can construct bounding functions 

based on such metrics. 

 

According to Figure 10 and 11, the authors would like to 

propose the form of bounding function as illustrated in 

Figure 12. The function is proportional to the metric, m, 

and bounded by b1 and b2. If the metric is greater than the 

threshold t3, the fit should not be performed because the 

residual error possibly becomes very large. 

 

Bounding parameters are listed in Table 1 for this simple 

function. Percentage in the blankets below thresholds 

means the ratio of IGPs with the metric less than the 

threshold during October 2003 and November 2004 

storms. Parameters in Table 1 is determined based on 

these severe storms. 

 

Adaptive fit procedure based on the geometry monitor 

metric is as follows: 

  

1. Compute a geometry monitor metric for the order of fit. 

 

2. If the metric is smaller than the threshold 
3
t , employ 

resulted estimation and set bounding information as a 

function of the metric, m, 
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3. Otherwise, i.e., if the metric is greater than 
3
t , try the 

next model. 

 

Following this procedure from the second to the zeroth 

order, the MCS can determine an allowable order for fit 

with a given distribution of IPPs. The associate bounding 

function can also be computed by Eqn. (8) which 

becomes the source of GIVE value. 

 

Note that by this approach bounding information is set to 

protect users from all cases of historical severe storms 

involved to the definition of bounding functions. In fact, 

integrity might be broken by a storm condition such that 

we have never encountered, but, at least, this approach 

can protect users from all observed storms without missed 

detection conditions. 

Table 1. Parameters of Bounding Functions. 

# Model Metric 1
t  

2
t  

3
t  

1
b

2
b

1 Quad CNM
55 

(28%) 

180 

(77%) 

250 

(83%) 
4.4 9.4

2 Planar RCM
0.41

(38%) 

0.43 

(46%) 

0.45 

(53%) 
11 12

3 Planar CNM
18 

(12%) 

23 

(33%) 

23 

(33%) 
9.2 20

4 Zeroth FRM
1600 

(8%) 

2000 

(58%) 
- 

(100%)
9.1 15
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Figure 12. Proposed bounding function for the 

adaptive fit algorithm. If the geometry is greater than 

the threshold t3, such a fit will not be performed. 



 

Performance Evaluation 

 

In order to evaluate the performance of adaptive fit 

algorithm, it was tested for some periods and ionospheric 

conditions. The standard planar fit with the chi-square 

storm detector was also considered for comparison. 

 

Firstly the standard planar fit achieves the following 

overall performance. During severe storms, the 

availability of ionospheric corrections lowers to 70-80% 

due to trip of storm detector. RMS of residual errors, 

which represents the correction accuracy of the system, 

varied 0.3-0.4 meter nominal conditions while 0.5-0.6 

meter for severe storms. RMS of bounding information, 

σbound, was about 1.3 meters regardless of ionospheric 

conditions. However, the normalized residual error, ∆v,IGP, 

often exceeds 5.33 that means breaking 
7

10
−

 level of 

integrity. 

 

On the other hand, the adaptive fit algorithm achieves the 

availability of the ionospheric corrections over 99% 

(lower lines for each period on the table). The normalized 

residual is bounded by 5.33 while σbound increased slightly 

up to 0.1 meter. 

 

For the common set of IGPs that standard planar fit could 

be performed without trip of storm detector (upper lines), 

both the normalized residual errors are similar to those of 

the standard planar fit except during October 2003 storm. 

This fact means that the proposed adaptive fit algorithm 

will at least maintain the similar level of correction 

accuracy while eliminating missed detection conditions 

which threatens integrity of the system. 

 

For the nominal conditions, the adaptive fit algorithm 

bounded large residual errors with a slight increase of 

σbound up to 0.06 meter, without changing the parameters 

set based on severe storm conditions. 

 

CONCLUDING REMARKS 

 

The authors introduced geometry monitor concept to 

overcome undersampling threat. Using an appropriate 

metric indicating goodness of the geometry of 

observations, it is possible to bound the actual errors by a 

function of the metric, as well as determine model for fit. 

Relative Centroid Metric (RCM) and Condition Number 

Metric (CNM) were evaluated for this purpose. 

 

Employing an adaptive fit algorithm based on the 

geometry monitor, the availability of the ionospheric 

corrections improved from 70-80% to over 99%. Missed 

detection conditions are eliminated with little enlargement 

of GIVE values. 

 

Further investigations should include: trying other metrics 

to improve correction accuracy and GIVE values of the 

adaptive fit algorithm; considering of temporal variations 

of ionosphere; and studying scintillation effects. 

 

Following the failure of MTSAT-1 launch in 1999, 

MTSAT-1R geostationary satellite was successfully 

launched in February. It is now under test procedures and 

will broadcast test signals soon. The MSAS program is 

reaching to a milestone going on the operational phase. 
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