

Airborne Conflict Modeling and Resolution for UAS Insertion in Civil

Non-Segregated Airspace

Carlo Alfredo Persiani, Sara Bagassi

University of Bologna

Introduction

UAS Technological improvement

Advances in military technologies lead to the use in civil context:

- •Surveillance
- •Fire fighting
- •Dirty-Dull-Dangerous

ATM (Air Traffic Management)

Main goals in ATM:

- •Avoiding collision between aircraft
- •Expediting and maintaining an orderly flow of air traffic

ATM Automation Process

UAS Insertion in Civil Non-Segregated Airspace

Theoretical Framework

CD&R: Conflict Detection and Resolution Problem

Airborne

Centralized

Non-cooperative

Tactical

Cooperative

Strategic

State-based

Intent-based

Problem Formulation/1

UAS has to visit a set of mission waypoints:

Maintaining separation with air traffic;

Optimizing a selected function (Minimum Fuel, Minimum Time).

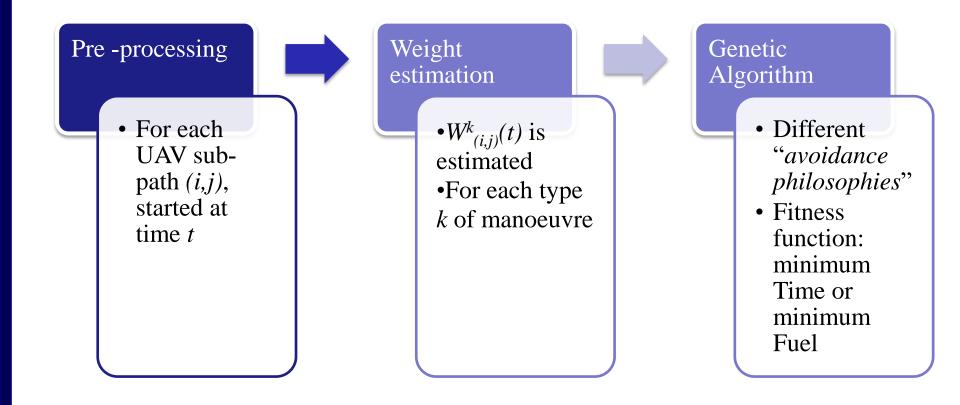
Assumptions:

The piloted air traffic has priority on the unmanned one;

If a conflict occurs, the UAS will modify its route in order to resolve it.

Problem Formulation/2

Two decisional dimensions:


1)Best visit order of the *m* mission waypoints

2)Type of avoidance manoeuvre:

- Holding
- Speed Variation
- Vertical/Horizontal Avoidance

Algorithm Overview

A conflict c occurs at the time t on the arch between i and j

The weight, for each avoidance manoeuvre, is calculated

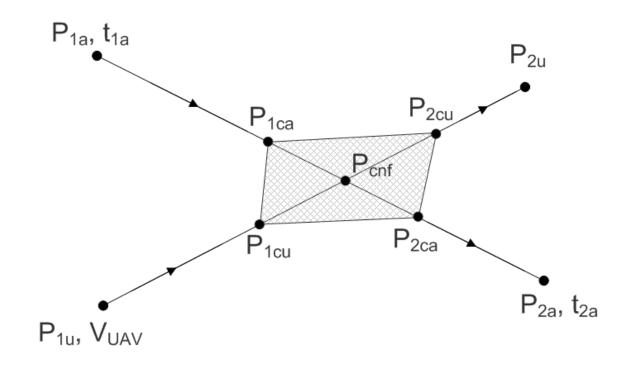
$w_{(i,j)}^k(t)$

It depends on:

The delay generated by the manoeuvre (time optimization)The fuel burnt during the manoeuvre (fuel optimization)

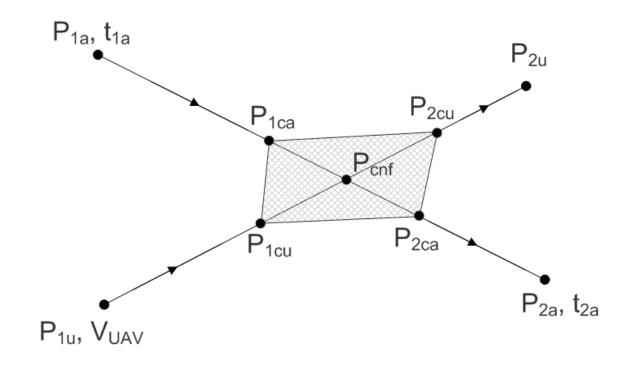
Each conflict resolution manoeuvre has to be:

- •Feasible, taking into account UAV performances
- •Modeled, in order to understand how it affects time delay

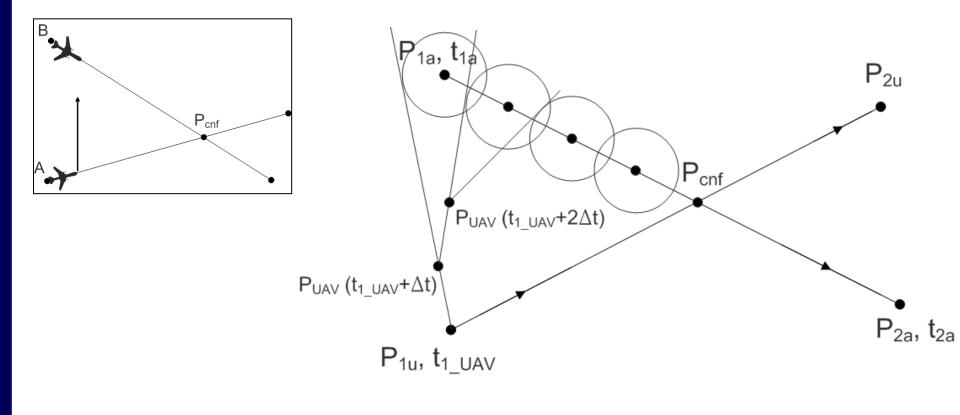

(or fuel consumption)

Type of avoidance manoeuvre:

- Holding
- Speed Variation
- Vertical/Horizontal Avoidance


Holding

 $w_{(i,j)}^{holding}(t) \quad \alpha \quad (h_{i,j}^t + (p_{1u} - p_{2u}/v))$


Speed variation

 $w_{(i,j)}^{scontr}(t)$ α $(p_{1u} - p_{2u})/v_m^{inc/red}(t)$

Vertical/Horizontal avoidance

$$w_{(i,j)}^{Havoid}(t)$$
 α $n_v \Delta t + n_p \Delta t$

A first population of η_p UAV routes R_n is generated. At each route a "Avoidance Philosophy" k_r is randomly assigned.

It consists in one of the following avoidance techniques:
holding(k=0),
speed control (speed reduction k=1, speed increasing k=2),
avoidance on vertical plane (k=3),
avoidance on horizontal plane (k=4).

GA: Fitness function

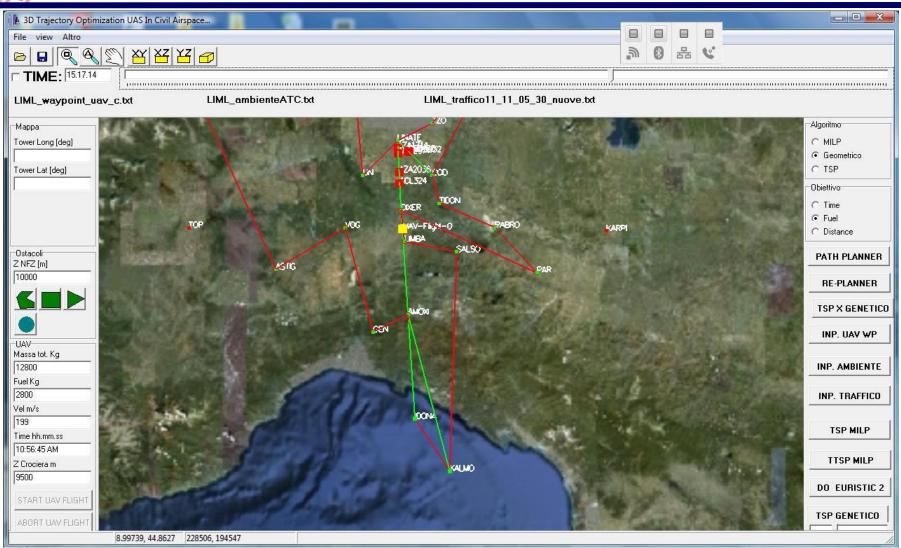
- 1. An optimization criterion is chosen: minimum time or minimum fuel;
- The fitness (time or fuel consumption) of each route is calculated - considering the weight of the arches function of the departing time step;
- 3. The population is sorted by decreasing fitness.

4. The evolution to the next population starts.

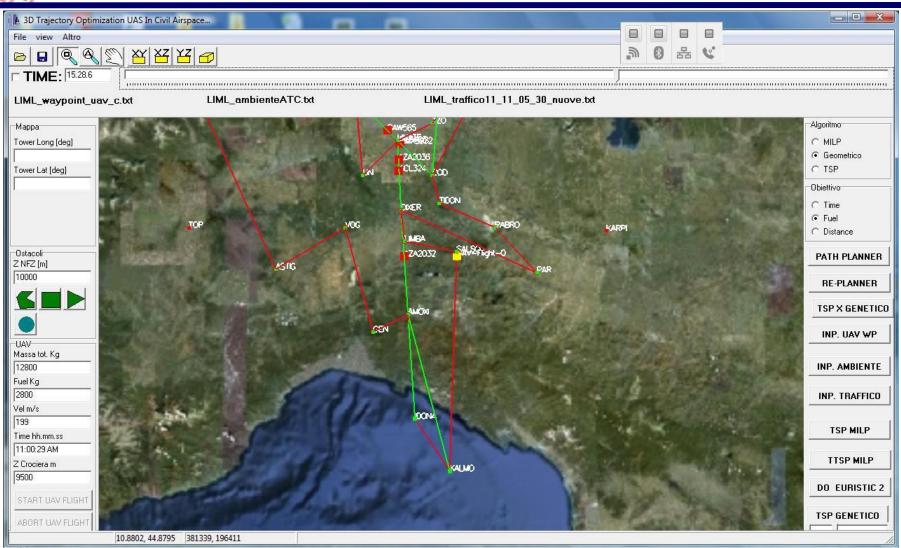
Evolution:

- •The first half of the population, sorted by decreasing fitness, is considered "good": the second part of the population is built from the chromosome of the previous part. **Termination:**
- •Repeat η_t times the evolution;
- •If the improvement in the last η_c individuals is less than 1%

then the evolution is terminated.


Simulation set-up

- **Real air traffic scenario**: the TMA (Terminal Manoeuvring Area) of Milano Linate (ICAO code LIML).
- Navigation Points as Radio-Assistance and Fix Points (radial and distance by a radio assistance) are reported; SID (Standard Instrumental Departure) route and STAR (STandard arrival Route) of the airport are modeled using **graphic tools**.
- Air traffic data are acquired by AOIS (Aeronautical Operational Information System) and Radar Track provided by ENAV S.p.A (Italian Agency for Air Navigation Services).
- Position and altitude of **115 aircraft** (arrival, departure and overflying traffic) are simulated for **6 hours of simulation**.
- The UAV target points are generated considering that some of the UAV target points correspond to the aircraft navigation points, the others have been randomly generated.



minimum fuel objective

	Obj Value	N° of Conflicts	Holding	Speed Red.	Speed Inc.	H Avoidance	V Avoidance	CPU time
20 targets	249	3	0	0	0	0	3	3,78
25 targets	310	4	1	0	1	1	1	6,12
30 targets	317	4	0	1	1	1	1	7,41
35 targets	332	2	1	0	0	0	1	15,66
40 targets	354	5	1	1	1	1	1	17,47
45 targets	433	4	1	0	0	0	3	21,98

 $\eta_p = 200$, $\eta_t = 3500$, $\eta_c = 330$, and $\Delta t = 1$ minute, computed on an IntelCore Duo 2GHz

minimum time objective

	Obj Value	N° of Conflicts	Holding	Speed Red.	Speed Inc.	H Avoidance	V Avoidance	CPU time
20 targets	260	5	1	2	1	1	0	3,83
25 targets	298	2	1	0	0	1	0	5,67
30 targets	304	5	1	0	2	0	2	13,69
35 targets	325	5	4	1	0	0	0	16,8
40 targets	404	4	0	0	1	2	1	12,48
45 targets	416	4	0	1	0	1	2	18,53

 $\eta_p = 200$, $\eta_t = 3500$, $\eta_c = 330$, and $\Delta t = 1$ minute, computed on an IntelCore Duo 2GHz

Conclusion

- We present the problem of the management of an UAV mission into controlled non-segregated air space.
- A genetic algorithm has been presented to solve the problem in real traffic scenarios.
- The genetic algorithm allows to deal efficiently with the problem's time dependence, moreover it is useful to identify a proper avoidance manoeuvre.
- Simulation results show how the proposed geometric model efficiently defines the arches weights to be used in the conflict resolution.
- Computation time shows that this approach could be applied to future real time applications.

Thank you for your attention