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* Aircraft execute 4D trajectories to meet Required Times of Arrival with high
but not perfect precision

e wind prediction, aerodynamic performance, etc
e order of +10 seconds for a 30 min prediction horizon

= Delay to traverse the fix as function of precision ?
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Research Goal

* Inputs:
- Schedule of aircraft arrivals at a fix (e.g. runway threshold)
- Capacity metric (e.g. minimum headway requirements)
- Precision of aircraft in flying 4D trajectories

¢ Estimate queueing delay for each aircraft to cross that fix




Analytical Aircraft Queueing Models




Analytical Aircraft Queueing Models

e Aggregate models derived from classical queueing theory:




Analytical Aircraft Queueing Models

e Aggregate models derived from classical queueing theory:

- M(t)/M(t)/1 and M(t)/D(t)/1 (Koopman 1972)




Analytical Aircraft Queueing Models

e Aggregate models derived from classical queueing theory:
- M(t)/M(t)/1 and M(t)/D(t)/1 (Koopman 1972)
- M(t)/Ex(t)/1 (Kivestu and Odoni 1976)




Analytical Aircraft Queueing Models

e Aggregate models derived from classical queueing theory:
- M(t)/M(t)/1 and M(t)/D(t)/1 (Koopman 1972)
- M(t)/Ex(t)/1 (Kivestu and Odoni 1976)

- Variance in number of arrivals is built in the model




Analytical Aircraft Queueing Models

e Aggregate models derived from classical queueing theory:
- M(t)/M(t)/1 and M(t)/D(t)/1 (Koopman 1972)
- M(t)/Ex(t)/1 (Kivestu and Odoni 1976)

- Variance in number of arrivals is built in the model

e Deterministic approach




Analytical Aircraft Queueing Models

e Aggregate models derived from classical queueing theory:
- M(t)/M(t)/1 and M(t)/D(t)/1 (Koopman 1972)
- M(t)/Ex(t)/1 (Kivestu and Odoni 1976)

- Variance in number of arrivals is built in the model

e Deterministic approach

- Curves of cumulative number of customers (Newell 1979)




Analytical Aircraft Queueing Models

e Aggregate models derived from classical queueing theory:
- M(t)/M(t)/1 and M(t)/D(t)/1 (Koopman 1972)
- M(t)/Ex(t)/1 (Kivestu and Odoni 1976)

- Variance in number of arrivals is built in the model

e Deterministic approach

- Curves of cumulative number of customers (Newell 1979)

= Scheduled Time AdheRence (STAR) Model




Analytical Aircraft Queueing Models

e Aggregate models derived from classical queueing theory:
- M(t)/M(t)/1 and M(t)/D(t)/1 (Koopman 1972)
- M(t)/Ex(t)/1 (Kivestu and Odoni 1976)

- Variance in number of arrivals is built in the model

e Deterministic approach

- Curves of cumulative number of customers (Newell 1979)

= Scheduled Time AdheRence (STAR) Model

e Each aircraft has Required Time of Arrival at server




Analytical Aircraft Queueing Models

e Aggregate models derived from classical queueing theory:
- M(t)/M(t)/1 and M(t)/D(t)/1 (Koopman 1972)
- M(t)/Ex(t)/1 (Kivestu and Odoni 1976)

- Variance in number of arrivals is built in the model

e Deterministic approach

- Curves of cumulative number of customers (Newell 1979)

= Scheduled Time AdheRence (STAR) Model

e Each aircraft has Required Time of Arrival at server

e Aircraft meet RTA’s with some stochastic lateness (%)
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Approach

e Aircraft’s arrival time at the fix is normally distributed around their RTA

v

RTA;

e First-Scheduled-First-Served (no overtakings)
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Model Formulation

e Assigned Scheduled Times of Arrival at a fix R7;

e Arrival time of aircraft i at the fix (unimpeded from queue effects) is
Ai = RT; +¢&, ei~Normal (0, o;)
* Minimum allowed headway at the fix h;_4

e The departure time from the fix is
D; = max(A;, D;_1 + h;_1)
e Queueing delay is
W, =D, — A;

e How to estimate E[D;] and Var[D;]?
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Solution with the Clark Approximation
Method

e Fornormal Xand Y

- max(X,Y) Is a non-normal random variable

e Clark (1961)

- derives mean and variance of max(X,Y)

- approximates distribution of max(X,Y) as normal

e Use Clark Approximation Method recursively to estimate E[D;] and
Var[Di]
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Accuracy of the Clark Approximation Method

e Generated a wide range of scenarios

e Total of 120 flights with 3 classes of aircraft (#; = 30, 60, 90 sec)
e Schedule flightsatafix RT; = R1;,_ 1+ h;—1 + b

e 90 operational scenarios:

- 10 different sequences of h; , where each sequence is determined
randomly but given an equal mix of 30, 60, and 90 second headway values

- b =0, 10, and 20 seconds (held constant within each sequence)

- 0 = 10 seconds (uniform across all aircraft), 30 seconds (uniform across all
aircraft), and an equal mix of both (with the order determined randomly)

e Compared estimates of the Clark method with average of 10* Monte Carlo
simulation runs
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Accuracy tests of Clark Approximation Method

Percent Error in Total

Delay

Absolute Error in Total

Delay (sec)

Absolute Error per
Flight (sec)

Buffer
10 sec

Buffer
20 sec

Buffer
O sec

Buffer
10 sec

Buffer

Buffer

20sec] Osec

Buffer
10 sec

Buffer
20 sec

-3.26%

-3.93%

13.78

9.17

2.97

0.14

0.09

0.08

-2.41%

36.5

31.17

0.35

- .7%

97.26

54.07

0.89
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Special case: metering

e Minimum allowed separation #/

e How much buffer to allow between aircraft?
v Zero buffer
- Efficient, but any unpunctual arrival causes delay upstream
v'Non-zero buffer

- Less efficient, but can absorb stochastic deviations from
schedule

e Stochastic deviations more costly
e Trade-offs?

e Total Loss = Deterministic + B - Stochastic
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Model formulation

e |nsert buffer » between consecutive arrivals

e Standard Deviation of ¢ seconds for adherence error distribution

e Stochastic Delay W;:

Delay to i flight when g =1

—

- Showed that W, = o - Z;

e Total expected loss in efficiency for N flights:

E[L] = (1/2-(N—1)-N-A+6-ZE[Z,L-]) o

e Normalized buffer /\ — b/O
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e Situation of heavy traffic for landings
and take-offs

e Today: Controllers “guide” aircraft to
merging point (5 nmi from 28R)

e NextGen: Aircraft assigned RTA’s at
merging point and descend to the
runway

e \What is optimal metering headway?
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