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Time-based Operations

• Aircraft execute 4D trajectories to meet Required Times of Arrival with high 
but not perfect precision

• wind prediction, aerodynamic performance, etc

• order of ±10 seconds for a 30 min prediction horizon

➡ Delay to traverse the fix as function of precision ?
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Research Goal

• Inputs:

- Schedule of aircraft arrivals at a fix (e.g. runway threshold)

- Capacity metric (e.g. minimum headway requirements)

- Precision of aircraft in flying 4D trajectories

• Estimate queueing delay for each aircraft to cross that fix
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Analytical Aircraft Queueing Models

• Aggregate models derived from classical queueing theory: 

- M(t)/M(t)/1 and M(t)/D(t)/1 (Koopman 1972)

- M(t)/Ek(t)/1 (Kivestu and Odoni 1976)

- Variance in number of arrivals is built in the model

• Deterministic approach

- Curves of cumulative number of customers (Newell 1979)

➡ Scheduled Time AdheRence (STAR) Model

• Each aircraft has Required Time of Arrival at server

• Aircraft meet RTA’s with some stochastic lateness (±)
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RTA i

• Aircraft’s arrival time at the fix is normally distributed around their RTA

• First-Scheduled-First-Served (no overtakings)

Approach

h
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Model Formulation

• Assigned Scheduled Times of Arrival at a fix RTi

• Arrival time of aircraft i at the fix (unimpeded from queue effects) is 

Ai  = RTi  + εi  ,           εi ~ Normal (0, σi)

• Minimum allowed headway at the fix 

• The departure time from the fix is

• Queueing delay is 

• How to estimate E[Di] and Var [Di]?

Di = max(Ai, Di−1 + hi−1)

hi−1

Wi = Di −Ai
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Solution with the Clark Approximation 
Method

• For normal X and Y 

- max(X,Y ) is a non-normal random variable

• Clark (1961)

- derives mean and variance of max(X,Y )

- approximates distribution of max(X,Y ) as normal

• Use Clark Approximation Method recursively to estimate E[Di] and 
Var[Di] 
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Accuracy of the Clark Approximation Method

• Generated a wide range of scenarios

• Total of 120 flights with 3 classes of aircraft ( hi = 30, 60, 90 sec)

• Schedule flights at a fix 

• 90 operational scenarios:

- 10 different sequences of hi , where each sequence is determined 
randomly but given an equal mix of 30, 60, and 90 second headway values

- b = 0, 10, and 20 seconds (held constant within each sequence)

- σ = 10 seconds (uniform across all aircraft), 30 seconds (uniform across all 
aircraft), and an equal mix of both (with the order determined randomly)

• Compared estimates of the Clark method with average of 104 Monte Carlo 
simulation runs

RTi = RTi−1 + hi−1 + b
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Special case: metering

• Minimum allowed separation h

• How much buffer to allow between aircraft?

✓Zero buffer

- Efficient, but any unpunctual arrival causes delay upstream

✓Non-zero buffer

- Less efficient, but can absorb stochastic deviations from 
schedule

• Stochastic deviations more costly

• Trade-offs?

• Total Loss = Deterministic + β * Stochastic



Queueing diagram example



Queueing diagram example

!"

#!"

$!"

%!"

&!"

'!!"

'#!"

'$!"

!" '!!!" #!!!" (!!!" $!!!" )!!!" %!!!" *!!!" &!!!"

!"
#
"$
%&

'(
)*
"#

+(
,)
-.
)/
$01
23
4)

50#()

+,-,./01"

23034/56"

78-3.039":;4<=6;-=0"

>3?,59"

N 

1/h 
1/a 

>3034?/5/@A."
>3B,1"

78-3.039"
C0<.;,@A."
>3B,1"

! 



Queueing diagram example

• Deterministic ~ N2, Stochastic ~ N
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Model formulation

• Insert buffer b between consecutive arrivals

• Standard Deviation of σ seconds for adherence error distribution

• Stochastic Delay Wi :

- Showed that  

• Total expected loss in efficiency for N flights:

• Normalized buffer ∆ = b/σ

E [L] =

�
1/2 · (N − 1) · N · ∆ + β ·

N�

i=1

E [Zi]

�
· σ

Wi = σ · Zi

Delay to i th flight when σ =1
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Paired Arrivals at SFO

• Situation of heavy traffic for landings 
and take-offs

• Today: Controllers “guide” aircraft to 
merging point  (5 nmi from 28R)

• NextGen: Aircraft assigned RTA’s at 
merging point and descend to the 
runway

• What is optimal metering headway?
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- Enough time between arrival pairs for a departure pair
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Thank you!

Questions?


