羽田空港での滑走路異物監視システムの評価進捗

監視通信領域 ※二ッ森 俊一, 森岡 和行, 河村 暁子, 米本 成人

1 はじめに

滑走路異物(Foreign object debris, FOD)監 視システムは, FOD を自動的に探知し,空港 運用者に情報を提供するシステムであり,空港 運用に係る安全性向上のために導入が進められ ている。FOD 監視システムの導入は,FOD に 起因する事故を未然に防ぐだけではなく,滑走 路を閉鎖して実施する滑走路点検の時間短縮を 図ることが可能となる。これにより,滑走路利 用効率の向上および空港滑走路閉鎖に伴う航空 機の上空待機時間の低減が図れ,CO₂排出削減 が期待できる。電子航法研究所らの研究グルー プでは,実用化に向けた FOD 監視システムの 開発を実施し,センサ単体で国際技術基準を超 える探知性能達成とレーダセンサ設置条件の明 確化をした[1]。

本稿では、東京国際空港(以下,羽田空港) で2023年3月から実施している、FOD 監視シ ステム評価装置[2]を用いた評価進捗について 議論を行う。最初に羽田空港へ設置したFOD 監視システム評価装置の概要を述べる。次に、 国際技術基準への適合性評価について議論を行 う。評価システムを用い、誤検知、未検地、環 境変動および信頼性確認等の複数評価項目を実 施しているが、その中でも国際技術基準の探知 率、探知時間、位置精度、複数対象物分離性能 等の評価項目への適合性評価結果についてこれ までに得られた結果を示す。

2 羽田空港へ設置した FOD 監視システム評 価装置の概要

提案している FOD 監視システムでは、まず ミリ波レーダセンサを用いて異物を探知し、そ の後に、レーダセンサで得られた位置情報に基 づき、FOD のカメラ画像を取得する。また、 FOD 監視システムでは、滑走路上の探知覆域 を、複数の滑走路センサで分割して FOD 探知 を行う。評価装置では、その中の1つの監視覆 域を対象として、滑走路脇に設置した1局の滑

図1 東京国際空港におけるFOD 監視システム評価装置の設置位置

図 2 FOD 監視システム評価装置 滑走路センサ鉄塔の概観

走路センサと東京空港事務所庁舎内に設置した 中央局の構成である。図1に,滑走路センサの 設置場所を示す。C滑走路34R側のGSシェル タ付近に,各種センサを搭載した FOD 監視シ ステム評価装置鉄塔を設置した。滑走路中心か ら鉄塔までの距離は,約232mであり,セン サから350mの範囲を設計上のFOD 探知覆域 としている。評価装置では,滑走路センサ1局 の構成であるが,実用システムでは,監視覆域 に応じて,必要な局数に設定することを想定し ている。滑走路センサと中央局間は光ファイバ ケーブルで接続し,機器制御および監視情報の 伝送を行う。天候影響評価も実施するため,雨 量,風速,温度,湿度等のデータを取得する気 象計を設置している。図2および図3に,そ

- 図 3 FOD 監視システム評価装置 滑走路センサ鉄塔上部の概観
- 表1 FOD 探知用ミリ波レーダ仕様

周波数带	92 GHz – 100 GHz
送信帯域幅	最大 8 GHz
送信電力	18 dBm
アンテナ利得	43 dBi

れぞれ滑走路異物監視システム評価装置滑走路 センサ鉄塔および鉄塔上部の概観を示す。鉄塔 の塔頂部踊り場の滑走路対面方向にミリ波レー ダセンサおよび高精細カメラを設置している。 反対側には気象センサを設置する。

表1に、これまでに開発し、評価システムに 適用している、FOD 探知用ミリ波レーダ仕様 を示す。90 GHz 帯を用いた広帯域ミリ波レー ダであり、最大 8 GHz の送受信帯域幅を有す る。90 GHz 帯ミリ波レーダを用いることで、 ライダや特定小電力ミリ波レーダ等を利用した 他の FOD 探知センサと比較し、高い探知性能 と悪天候への耐候性を両立することができる。 また、最大 8 GHz の広信号帯域幅を活用し、 高分解能かつ高い滑走路面クラッタ除去性能を 確保している。

3 EUROCAE MASPS ED-235A 適合性評価

FOD 監視システムの最低性能要件として, 欧州民間航空機器機構(European Organisation for Civil Aviation Equipment, EUROCAE)から 発行された EUROCAE ED-235A [3] (2016年3 月発行)がある。ここでは,評価システムを用 いて実施した,探知率,探知時間,位置精度,

評価項目	要求性能
探知率	6種の基準対象物を晴天時95%
	以上の探知率で探知すること
探知時間	4 分以下
位置精度	5 m 以下
複数対象物	10 m 間隔で設置した 3 つの金
分離性能	属円柱を分離可能であること

図 4 EUROCAE ED-235A MASPS 探知率試験 における評価対象物

複数対象物分離性能の4つの評価項目について 議論を行う。表2に評価項目と要求性能を示す。 本試験は,主に2024年2月および3月の夜間 滑走路閉鎖時間に実施した。

最初に, FOD の探知率評価について述べる。 探知性能については、6 種類の基準対象物に対 し、晴天時 95 %以上の探知率が要求されてい る。図4に、探知率試験における評価対象物を 示す。EUROCAE ED-235A では,基準対象物 として, タイヤ片 (10 cm 以下), 灯火, M10 ナット・ボルト (8 cm 以下), 燃料キャップ (7 cm 以下), コンクリート片 (10 cm 以下), 歪んだ金属片等の6種が定められている。本試 験では、上記 6 種の対象物について、ED-235A 対象物および寸法比 50%の対象物について評 価を実施した。なお、各測定条件において測定 数100回以上が求められているため、起伏の異 なる滑走路上の複数地点9か所に同一対象物を 設置し,30 度毎に 360 度回転させることで設 置角度等についても様々な条件での評価を行う。

図5 探知率試験における評価対象物設置位置

図5に,探知率試験における評価対象物設置 位置を示す。評価場所は滑走路内の5か所であ り, 最も滑走路センサに近い 235 m 地点, お よび北側 350 m 地点, 南側 350 m 地点, 北側 500 m 地点, 南側 500 m 地点の 5 か所である。 350 m 地点は設計上の覆域端であり, 500 m 地 点は覆域以上における探知率を評価するために 試験を実施する。表3に、MASPS 基準対象物 の探知率を示す。350 m以内の場所においては, 全ての対象物の探知率は95%以上であり、灯 火, 燃料キャップおよびコンクリート片の探知 率は 100 % である。 500 m 地点では M10 ボル ト・ナットの探知率低下が観測されているが, ボルト・ナットの低背構造と高い反射指向性に 起因するものである。表4に, MASPS 寸法比 50%対象部の探知率を示す。試験結果から350 m 以内の範囲においては、全ての対象物につ いて探知率 95 %以上である。なお、南側 500 m 地点においては、時間の制約のために測定 は未実施である。これらの結果から、構築した 評価システムは MASPS 基準を超える探知率を 有することを確認した。

次に,探知時間と位置精度の評価結果につい て述べる。探知時間と位置精度はそれぞれ4分 以下および5m以内が求められている。図6 に,探知時間評価および位置精度評価における 金属円柱の設置位置および結果を示す。評価は 探知率と同様に5か所で実施し,滑走路中心に, 直径4cm,高さ3cmの金属円柱を設置する。 探知時間は測定者が評価地点に金属円柱を設置 してから FOD 監視システムの表示画面に検出 されるまでの時間を評価する。測定結果は全て

サンプル	北側	北側	235 m	南側	南側
	500 m	350 m		350 m	500 m
タイヤ片	98.3	99.1	98.3	100	96.6
灯火	100	100	100	100	100
M10					
ボルト	68.4	97.4	98.3	95.7	43.6
ナット					
燃料	100	100	100	100	96.6
キャップ					
コンク	100	100	100	100	100
リート片					
金属片	98.3	98.3	100	100	89.8

表3 MASPS 対象物の探知率

表 4 MASPS 寸法比 50 % 対象物の探知率

					-
サンプル	北側	北側	235 m	南側	南側
	500 m	350 m		350 m	500 m
タイヤ片	95.7	100	99.1	99.2	-
灯火	100	100	100	100	-
M10					
ボルト	71.4	98.3	99.1	95.7	-
ナット					
燃料	99.1	100	100	97.4	-
キャップ					
コンク	99.1	100	99.1	98.3	-
リート片					
金属片	88.0	95.7	98.3	99.1	_

1 分以下となっている。これは測定時のレーダ 更新頻度が約1分となっているためである。ま た,位置精度については、金属円柱設置地点に おけるキネマティック GPS 受信機の測位結果 と FOD 監視システムの画面に表示された検出 物体の座標の差分を評価する。差分は,0.46 m から 2.40 m の間であった。また,滑走路セン サの設計覆域である 350 m 以内では最大 1.34 m の差分となった。

最後に,複数対象物探知性能評価について述べる。滑走路中心に,10 m 間隔で設置した3 つの金属円柱(直径4 cm,高さ3 cm)の金属 円柱について,3 つに分離して同時に画面表示 されることが必要である。図7に,複数対象物 探知試験における金属円柱の設置位置を示す。

図 6 探知時間評価および位置精度評価に おける金属円柱の設置位置および結果

図7 複数対象物探知試験における金属円柱の 設置位置

評価を実施した全ての位置において設置した金 属円柱が3つに分離して同時に画面表示される ことを確認した。

3 FOD 検知結果例

2023 年 3 月に評価システムを設置後, C 滑 走路南側の評価エリア内におけるバードストラ イク, 落鳥, FOD 等の発生を探知している。

図 8 に,評価エリア内で探知した FOD の例を 示す。バードストライク,落鳥,FOD 等につ いては 2023 年度に 5 件,2024 年度に 4 件を探 知し,探知エリア内で回収された事例全て探知 していることを確認している。また,パイロッ トレポート等により通報された時刻よりも早く, 発生後直ちに探知した事例が多くあることも確 認している。

また,2024 年 10 月には,航空機の離陸時に 発生したエンジン破損により離陸中止した際に は,事例発生直後から多数の FOD を探知し,

図8 FODの検知結果例

深夜に FOD 回収が完了するまで反応が継続す ることを確認した。

4 むすび

羽田空港の設置している FOD 監視システム 評価装置の評価進捗について述べた。国際技術 基準適合性評価や FOD 検知結果例を中心に議 論を行ったが,誤検知評価のためのセンサ反応 分析も実施しており,今後結果を明らかにする。

謝辞

評価装置の設置および試験実施にご協力頂い ている国土交通省航空局,東京航空局,東京空 港事務所の方々を始めとした関係各所の皆様に 深く感謝いたします。

参考文献

[1] S. Futatsumori et. al., "Performance evaluations of airport runway foreign object detection system using a 96 GHz millimeter-wave radar system based on international standard", Proc. of the 47th International Conference on Infrared, Millimeter, and Terahertz Waves, pp.1-2, Sept. 2022.

[2] 二ッ森 俊一, "96 GHz 帯ミリ波レーダを 用いた滑走路異物探知システムの研究開発状況 -東京国際空港に設置した滑走路異物監視シス テム評価装置の概要-,"信学技報, vol. 124, no. 320, SANE2024-50, pp. 45-49, 2024 年 12 月.

[3] European Organization for Civil Aviation Electronics, "Minimum Aviation System Performance Specification for Foreign Object Debris Detection System", ED-235A, Apr. 2024.