15. 飛行検査データを活用した DME の誤差解析

航法システム領域 ※毛塚 敦, 斉藤 真二, 麻生 貴広, 福島 荘之介

1. はじめに

航空航法ではGNSSが用いられており, RNP-AR 等GNSSの装備が必須となるRNAV航路が増大して いる。また,その認証を持つ機体も増加し,使 用実績も増えている。一方で,GNSS信号は高度 約2万kmの衛星から到来するため,脆弱性を持っ ており,これまで様々な障害事例が報告されて きた[1]。そこで,GNSS障害が起こった場合でも 航空機の安全と航空交通容量を維持できるよう, GNSSのバックアップシステム(APNT: Alternate Position Navigation and Timing)を構築する必 要がある。

APNTはICAO NSP(航法システムパネル)での検 討課題となっており,将来的に各国で整備され ていくものと見込まれる。現在,Loran-Cの性 能・機能を改良したeLoran(enhanced Loran)が 英国[2]・韓国[3]・米国[4]で検証されている。 DME/N(Distance Measuring Equipment /Normal) は,機上DME装置から地上DME局への質問・応答 時間から測距を行う装置であり,2局との測距で 測位を行うDME/DME測位が現在使用されている が,このDME/Nを改良したeDME(enhanced DME) による測位をAPNTとすることがFAAを中心に提 案・検証されている[5]。

現在,我が国でもGNSSの装備が必須となる RNAV航路が数多く存在する。1マイルの航法精度 が必要なRNAV1については,GNSS以外にも DME/DMEの使用が認められているが,0.3マイル の精度が必要なRNP-ARではGNSSの装備が必須と なっている。GNSSの使用にあたっては,疑義が 生じた場合にGNSSに依存しない航法(従来航法) に移行できる場合に限り認められている。すな わち,現状のGNSSのバックアップにはDME/DME 等が用いられることになる。DMEは長い年月の運 用により,開発当初の仕様に比べて高精度化さ れていることが知られている。そこで,日本国 内の将来的なAPNT構築に向けて,まずは現状の バックアップであるDME/Nの精度について明ら かにし、RNAVに要求される精度に対してどの程 度満足していないかを定量的に把握する。また、 現状のDME/Nの誤差要因とその量を明らかにす ることで、APNTの候補の一つであるeDMEの将来 的な開発に向けた開発要件を明らかにする。本 報告では、国土交通省が実施している飛行検査 データを活用し、現状のDMEの性能把握のための 一検討を行ったので報告する。

2. DME による APNT の動向

2.1 NextGEN DME

米国FAAでは、2015年までに進められていた APNTの計画[6]を修正し、GNSSが使用不可能にな った際に測位を補完するものとして、PBS NAS Navigation Strategy 2016[7]にて新たな計画を 発表している。この計画における"NextGen DME" では、GNSSサービスが中断した際、IRUを使用せ ずにPBN運航をサポートするためのレジリエン トな補完システムを構築するため、エンルー ト・ターミナル空域においてDMEの覆域を拡張す るとのことである。Near term (2016~2020)で はクラスAの空域をDME/DMEでカバーする。また、 Mid-term (2021~2025) 終了までに、サイト固 有の評価に基づき、NSG (Navigation Service Group)1、2の空港[7] へDME/DMEのカバレッジを 拡大することを計画している。

2.2 enhanced DME

PBS NAS Navigation Strategy 2016では, Far term (2026~2030)においてAPNTの研究を継続 する計画となっている。将来的なAPNT方式の候 補の一つであるeDMEでは,以下に示すような 様々な要素技術の適用が提案されている。

① ビート信号の放送:DME/Nでのトランスポン ダの応答やスキッタに時刻同期・または非 同期のビート信号を加えて放送する。非同 期の場合には2 way ranging (質問と応答) によりトランスポンダの時刻オフセット量 を得ることができる。

- ② 搬送波位相を利用:インテロゲータ受信機 で受信された搬送波位相を利用し、測距精 度を改善する。
- ③ データ放送の利用: 例えば,2番目のパルス(又は全パルス)にパルス変調を加えることで,補正情報等を地上DME局から航空機に送信することができる。なお、データ転送にはビート信号も活用できる。

高性能な要求ほどシステムは複雑化する。GNSS 障害時の時刻同期の課題を考える必要があるが, DMEの局が時刻同期することでeDMEの高精度化 が期待できる。本研究にて国内に設置された DME/Nの誤差量を把握することで,将来的なeDME の開発における要件を明らかにすることが可能 となる。

3. DME 測距誤差の評価方法

3.1 RNAV 航法に要求される精度

RNAV運航に対応するためにDMEに要求される測 距精度は式(1)により与えられる。

$$TSE = \sqrt{FTE^2 + (Ranging \ error \ \times HDOP)^2} \quad (1)$$

TSEはトータルのシステム誤差,FTEは飛行技術 誤差であり,RNP-ARではTSE=0.3,FTE= 0.25と なる。HDOPは幾何的配置を指数化したものであ り,DME/DME測位では最悪値で2.8となる。これ らより,DMEをRNP-ARに適用する場合の要求測距 精度は108m(0.058NM)となる。

3.2 飛行検査データの活用

DME/Nの現状性能把握においては、国土交通省 航空局が実施する飛行検査データを活用した。 飛行検査業務では、全国各地に配置されている 航空保安施設や空港及び航空路などに設定され ている飛行方式等の検査を行っている。DMEも検 査対象施設であり、平成27年度までは年2回、平 成28年度以降は年1回の検査を行っている。

セスナCJ4, ボンバルディアDHC-8-300および BD-700, SAAB2000, ガルフストリーム-IVの5機 種で取得した検査データを活用することが可能 であるが, データの再現性を確認することを考 慮すると、同一経路・同一高度を飛行した複数 の検査データを入手することが望ましい。CJ-4 は平成27年10月に就航し、検査データの蓄積が ないため、複数データの取得が現時点では困難 である。また、飛行高度については、気圧高度 データのみ取得している機体は、真高度からの 差が変動するため、同一高度でのデータ比較が 困難である。そこで、MSAS補正されたGPS高度デ ータが利用可能なDHC-8-300(図1)での検査デ ータを活用することとした。本機体にはノルウ ェーのNSM社製の飛行検査システムが搭載され ている。

図1 飛行検査機(Bombardier DHC-8-300) (出典:国土交通省ホームページ[8]より抜粋)

3.3 ディジタルフィルタの適用

DMEの誤差要因は、機上装置に関わる部分、地 上局に関わる部分、マルチパス/対流圏遅延など 伝搬に関わる部分に切り分けられ、マルチパスによ る誤差が最も大きいことが知られている。これら各 成分を抽出するためには、検査データに対してデ ィジタルフィルタを使用することが有効である[9]。マ ルチパス成分はDMEからの距離に対して変動する 場合が多いため、ハイパスフィルタとして動作する CMNフィルタを用いる。また、バイアス成分を抽出 する場合には、ローパスフィルタが有効であり、PFE フィルタが用いられている。CMNフィルタの伝達関 数は式(2)で与えられる。

$$H(z) = \frac{\alpha(1 - z^{-1})}{\alpha + \omega_c + z^{-1}(\omega_c - \alpha)}$$
(2)

ω_c: CMN カットオフ周波数α: エイリアジング係数

4. 解析結果

4.1 神戸局検査データ

検査データの一例として,神戸局(KCE)のラジ アル 271 検査時の飛行高度(MSL)を図 2(a)に示 し,DME の測距誤差を図 2(b)に示す。測距誤差 は、真位置と DME 局位置から求まる真の距離と の差から求まる。図 2(a)(b)は 2012 年と 2014 年の4月に検査したデータであり、図 2(a)より 2回の検査において、高度差約 50feet 程度で飛 行していることが分かる。そして、図 2(b)より 測距誤差は0.07NM 程度であり、DME の測距精度 の仕様(0.2NM)よりも高精度で、RNAV 航法 (RNP-AR)で要求される精度に近いことが分かる。 神戸 DME は神戸空港の滑走路脇に設置されてい るが、神戸空港が人工島であるため、海面を除 いて周囲に建物や地形などのマルチパス環境が ない。このような環境においては、RNP0.3の航 法性能要件を満足しないものの、それに近い精 度を有していることが分かる。

4.2 隠岐局検査データ

隠岐局(0IE)のラジアル 204 検査時の飛行高 度(MSL)を図 3(a)に示し,測距誤差の変動分を 図 3(b)に示す。これらは 2011 年の 4 月と 12 月 に検査したデータであり,図 3(a)より高度差は 約 50feet 程度であることが分かる。隠岐 DME の ラジアル 204 の検査データについては,今回の 検討対象であるマルチパス誤差のみに着目し, 変動成分の評価を行った。図 3(b)は測距誤差の うち,CMN フィルタによってバイアス分を除去 し,変動分のみ抽出したものを示している。こ れより,4月・12月の双方の検査データにお いて,10NM 以内に2つの大きな誤差のピークが 生じていることが分かる。DME の仕様である 0.2NM は満足しているため,従来航法への適用 は問題ないが,GNSS 航法で要求される精度から は大きく外れていることが分かる。また,図3(b) より,4月・12月双方の誤差変動の傾向がよく 一致していることから,現状のDME/Nの精度評 価に飛行検査データの活用が有効であることが 分かった。

4.3 マルチパス誤差解析

隠岐局の誤差データの変動分はマルチパスで あると考えられるため、図4(a)の解析モデルを 用いてマルチパス誤差の解析を行った。マルチ パス源を仮定し、その位置を変化させ、シミュ レーションによる測距誤差が検査データと一致 する場所をマルチパス発生源とした。なお、DME はパルスの半値となる時刻により到来時間を検 出するため、シミュレーションにおいては、マ ルチパスによる到来時間の変化から測距誤差を 算出している。まず、マルチパス遅延時間に対 する DME の測距誤差を図4(b)に示す。これより、 遅延時間が 1 μ s~3 μ s の場合に測距誤差が大 きくなる傾向があり、電気長では 300m~900m と なる。よって、この範囲内でのマルチパス源探 索を行った。

(a) 解析モデル(b) 遅延時間に対する DME 誤差図4 マルチパス誤差シミュレーション

図 5 に dm=300m, θ =171°とした場合の測距 誤差のシミュレーション結果を示す。これより, 検査データと傾向が一致していることから, 図 3(b)において 10NM 以内で観測された変動はマ ルチパスが原因であることが確認された。

また、マルチパス源の位置を図6に示す。同 図の等高線が示すによう、隠岐空港周辺の地形 は極めて複雑である。シミュレーションにより 得られたマルチパス発生源の位置を見ると、新 滑走路と旧滑走路との間である。図7に示すよ うに、この位置には10mを超える大きな段差が 存在しているため、これがマルチパスの発生源 となっているものと考えられる。

5. まとめ

GNSS障害時の現状のバックアップとなるDMEの RNAVへの適応性能評価及びeDME開発要件を明 らかにすることを目的として,現状のDME/Nの性能 を調査した。国土交通省が行っている飛行検査の データを活用し,幾つかのDME局について解析し た結果,マルチパス環境でない場合には測距誤差 は0.07NM程度であり,RNP0.3の航法性能要件に は満たないものの,高性能であることが分かった。 しかし,マルチパス環境において誤差は大きく,将 来的なeDME開発においては特にマルチパス対策 技術の開発が重要であることが明らかになった。

図6周辺地形

図7 新旧滑走路間のマルチパス源(段差)

参考文献

- [1] 毛塚 他, 平成26年度電子研発表会資料
- [2] http://www.insidegnss.com/node/4539
- [3] Jiwon Seo, et al., Resilient PNT Forum II, Dana point CA, Jan. 2015
- [4] http://www.insidegnss.com/node/4539
- [5] K.Li, et al., Journal of the Institute of Navigation, vol.60, no.3, pp.209-220, 2013
- [6] Dean Bunce, 54th Meeting of the CGSIC, pp.14-17, Sep.2014.
- [7] http://www.faa.gov/nextgen/media/pbn_nas_n
 av.pdf
- [8] http://www.mlit.go.jp/koku/15_bf_000351.ht
 ml
- [9] Sherman Lo, et al., Proceedings of ION 2013, pp. 711-721, 2013

謝辞

本研究を進めるにあたり, データをご提供頂きまし た国土交通省航空局 交通管制部運用課 飛行検 査センターの関係各位に深く感謝致します。