11.進入経路上における管制間隔の気象の影響評価

航法システム領域 ※吉原 貴之,藤井 直樹 航空交通管理領域 瀬之口 敦

1 はじめに

羽田空港,成田空港などの混雑空港において は、安全を確保しつつ空港処理容量の拡大と燃 料消費の削減等の効率化が望まれている。滑走 路の増設によらずにこれらを実現するためには 離発着の間隔の短縮や,滑走路の効率的な運用 が必要となる[1]。その他,空港処理容量に影 響する要因として,気象現象が注目されており, 容量向上に向けた検討も行われている[2]。

将来における,新しい管制方式や航法システ ム等の導入によって着陸機の管制間隔の短縮が 期待されているが,それらの導入効果を評価す るためには現在の着陸間隔の特性を調査し,モ デル化する必要がある。着陸間隔は,後述の後 方乱気流管制方式や航法システム要件から定め られる安全間隔を確保する必要があるため,経 路上の向い風の強さの変動や乱流域の有無等, 気象条件に応じた安全マージンの間隔が存在す ると考えられる。このため,レーダー航跡等の 運航データを用いた定量的な解析と評価は,今 後の新たな管制方式や航法システムの導入によ る空港容量を定量的に評価する上で重要となる。

本研究では、将来の管制間隔の短縮に関わる 新しい管制方式や航法システムの導入に向けて 基礎となる知見として現状の着陸間隔の特性を 調査するため, 航空機監視レーダーの航跡デー タを用いて着陸間隔の統計解析を行うことを目 的としている。最終的には,気象条件の違いに 着目して、着陸機の時間及び距離間隔に着目し た発生頻度分布の違いや、そこに含まれる安全 マージンを定量化して可視化し、逆にその安全 マージンが増大する気象擾乱発生状況や頻度を 特定することで、気象条件と安全マージンの相 関をモデル化することを目指している。今回の 報告では、初期解析結果として羽田空港におけ る着陸間隔の全般的な特徴と,気象条件として 向い風成分,横風成分に着目した調査結果等 [3]を中心に紹介する。

2 到着進入経路上での着陸間隔について 2.1 着陸間隔に関わる制約

着陸間隔については、先行する航空機が生じ る後方乱気流が後続機に影響を与えることがな いように管制間隔を保つ後方乱気流管制方式が 定められている[4]。また、低視程下でも航空 機の精密進入をサポートする計器着陸装置 (ILS)には、空港面に配置されたグライドス ロープ(GS)及びローカライザ(LOC)と

ローフ (GS) 及びローカライサ (LOC) と いった構成機器の運用に制限区域が設けられて おり,後続機が着陸する際に先行機が制限区域 に留まることのないよう保護する必要があるこ とから着陸間隔に影響を与える要因の 1 つと なっている。とりわけ,高度 60m よりも低い 高度まで誘導可能なカテゴリー II / III (CAT-II/III) 計器着陸装置 (ILS) においては,着陸 機が滑走路進入端から 4NM の地点を通過した 後は ILS/LOC の制限区域を保護することが飛 行場管制方式で定められており[4],通常より も管制間隔が増加する要因となりうる。

2.2 管制間隔短縮への期待

安全を確保しつつ着陸容量を拡大するための 管制間隔の短縮については、前述の後方乱気流 管制方式の見直し(Re-categorization; RECAT) の動きがある。現在,表1のように航空機の重 量によって分類された4つの機種グループの組 合せに応じた管制間隔が定められているが、こ の機種グループを6つ程度に細分化することに より管制間隔をきめ細かく設定し、空港の着陸 容量を向上する RECAT フェーズ 1 が国際的に も導入されつつある。また、ターミナル空域に おける航空機監視レーダーによる距離間隔を基 本とした管制の場合,向い風が強い場合に対地 速度が遅くなり,同じ距離を進むために必要な 時間が長くなることから着陸容量が減少すると 考えられる。このため、向い風が強い状況下で は時間間隔を基本とした着陸間隔への運用に切 り替える時間ベースの間隔(TBS)による新し

		後続機			
		ヘビー機 (A380)	ヘビー機	ミディアム機	ライト機
先行機	ヘビー機 (A380)	3NM*	6NM	7NM	8NM
	ヘビー機	3NM*	4NM	5NM	6NM
	ミディアム機	3NM*	3NM*	3NM*	5NM
	ライト機	3NM*	3NM*	3NM*	3NM*

表1 ターミナルレーダー管制下における進行方向の最低離隔距離

*印はレーダー管制に起因する要件

い管制方式も英国ヒースロー空港に導入されて 注目されている[5]。さらに,現在は後方乱気 流の経路上への残存時間に関して最悪となる気 象条件を想定して管制間隔を導出しているが, 将来は安全が確保される範囲内で気象状況に応 じて柔軟に短縮することが期待されている。

ILS における CAT-Ⅲ精密進入に関わる制約 に関しては、ILS のように滑走路面まで及ぶ広 い制限区域を必要としない GPS 等を用いる衛 星航法による着陸システムである地上型補強シ ステム(GBAS)が期待されている[6]。CAT-I GBAS は国際的に導入されつつあるが、CAT-Ⅲ GBAS の国際標準案は国際民間航空機関

(ICAO) 航法システムパネル(NSP)で承認
され、2018 年に発効する予定である。CAT-III
GBAS は ILS 運用における管制間隔の制約を緩
和することが期待されている。

3 着陸間隔の算出と気象条件

本研究では、国土交通省航空局交通管制部か ら提供をいただいた航空機監視レーダー

(Automated Radar Terminal System; ARTS)の 羽田空港近辺の航跡データを用いて着陸間隔 (時間間隔及び距離間隔)を算出した。なお, 今回の解析では 2015 年 5 月,7 月,9 月,11 月及び 2016 年 1 月といった隔月 1 週間の合計 35 日分の航跡データを用いた。気象データは 気象庁が提供するアメダス観測点(羽田)の風 向,風速,降雨,気温の 10 分毎の観測値を基 本データとし,不足する視程等の情報は METAR や SPECI といった飛行場実況気象通報

方式データを用いた。 3.1 時間間隔の算出

先行機と後続機の時間間隔の算出については, 先行機が進入経路上で高度 400ft を通過した後 に,算出対象となる後続機が高度 400ft に到達 するまでの時刻差を計算することとした。この とき,航空機監視レーダーの回転周期は4秒で あるため,高度 400ft の通過時刻は前後の時間 の位置データを内挿して求めた。なお,今回の 初期解析では高度は気圧高度計によるものであ り,気圧高度計に起因する誤差,レーダーによ る航空機の水平位置誤差,進入経路からの逸脱 量等の影響は考慮していない。

3.2 距離間隔の算出

先行機と後続機の距離間隔の算出については, 先行機が高度 400ft に到達した時点での先行機 位置と算出対象となる後続機の幾何学的距離を 計算した。時間間隔と同様に,気圧高度計に起 因する誤差,水平位置誤差,既定進入経路から の逸脱量等の影響は考慮していない。また,今 回は2点間の3次元距離を算出したが,厳密な 管制間隔における定義は進入方向に沿った水平 面の距離であるため,今後改良を加える予定で ある。

3.3 気象条件

算出する着陸間隔のデータ数が十分蓄積すれ ば、様々な気象条件下での評価が可能となる。 しかし、今回は 35 日分の航跡データを用いた 解析であるため、気象条件を細分化して着陸間 隔を評価するにはデータ数が不足するという課 題があった。そこで、進入経路に沿った風につ いては追い風と向い風、進入方向に対する横風 については右舷向きと左舷向きの概略的な分類 で調査することとした。

4 羽田空港における交通流の特徴

図1に示すように羽田空港の4本の滑走路は 北風及び南風によって運用が切り替えられる [7]。CAT-I ILS は滑走路22,23,34L 及び34R に提供されているが、CAT-II/III ILS は 34R の みの提供となっている。また、北風運用では滑 走路 34R への着陸機は滑走路 23 からの離陸機 と依存関係にあり、南風運用では滑走路 23 の 着陸機と滑走路 34R の離陸機、並びに滑走路 22 の着陸機と 34L の離陸機に依存関係がある。

図2は第3章の方法で算出した羽田空港にお ける滑走路毎の着陸機の時間間隔の発生頻度を 4 秒毎のヒストグラムで示している。他の滑走 路の影響を受けない滑走路 34L が最も時間間 隔が短い分布形状をしており,逆に離陸機との 交差する領域をもつ滑走路 34R と 23 は分布幅 が広い。また,北風運用の滑走路 34L と 34R の分布形状の組合せが南風運用の滑走路 22 と 23 の組合せよりも時間間隔が短くなっており, 混雑時には北風運用時の方が単位時間当たりの 着陸機数が多いことがわかる。

5 着陸機と風の関係

5.1 向い風, 横風との関係

滑走路 34L と 22 の着陸経路は離陸経路と近 接交差する領域がなく,図2のような比較的間 隔が詰まった分布になることから、これらの航 空機毎の管制間隔と風の関係を調査することと した。図3に着陸機毎の時間間隔と進入方向の 風成分の関係を示す。図から滑走路 34L(北風 運用)は追い風 7m/s 程度まで選択されており, 滑走路 22(南風運用)が選択される時は逆に 非常に強い向い風に相当することがわかる。次 に、滑走路 34L と 22 の着陸機毎の時間間隔と 横風成分の関係を調査したところ, とりわけ滑 走路 22 については、航空機の右舷向きの風の 事例が非常に多くなっていた。これらの結果か ら、滑走路 22 が選択される気象条件としては、 滑走路 34L に対しては強い追い風であり、こ れは滑走路 22 の着陸機に対しては強い向い風 や強い横風に相当することを示している。

5.2 向い風・追い風と着陸間隔

ターミナル空域における後方乱気流管制方式 について、レーダー管制による距離による管制 が行われていることを考慮すると、経路上の向 い風が強いほど航空機間の時間間隔が長くなる と予想される。しかし、図3において時間間隔 が短いデータ点に着目すると特にそのような傾

図 2. 羽田空港における滑走路毎の着陸機の 時間間隔の発生頻度分布

向は見られない。向い風が強い場合であっても 時間間隔がそれほど大きくならないという結果 は、[2]においても指摘されている。この点に ついて、滑走路 34L の着陸機についての時間 間隔及び距離間隔の発生頻度分布がそれぞれど のような形状をしているか調査した(図 4)。 時間間隔には向い風,追い風で大きな差は見ら れず、図3と同様な結果を示している。一方、 距離間隔については追い風時の分布の方が間隔 が大きくなる傾向が見られ、時間間隔の分布が 同じであれば追い風が存在する方が距離が長く なるという両者に整合性の得られる結果となっ た。今後は、ターミナルエリアから最終進入ま でのいくつかの通過点で時間間隔がどのように 変化するか等の解析をする予定である。

6 まとめと今後の展開

本研究では,航空機監視レーダーの羽田空港 近辺の航跡データを用いて将来の管制間隔の短 縮に関わる新しい管制方式や航法システムの導 入に向けて基礎となる着陸間隔の統計解析を試 みた。得られた着陸間隔から実際の羽田空港の

図 3. 着陸機毎の時間間隔と進入方向の風と の関係(上図:滑走路 34L,下図:滑走路 22)

交通流について定量的評価が可能となったが, 向い風の強さによって着陸機の時間間隔はあま り変化が無かった。今後は,解析データの蓄積 で気象条件の事例を増やすとともに,低視程時 の管制間隔調査,管制間隔の算出における誤差 の考慮や手法の改良,ターミナルエリアも含ん だ複数の通過点での評価を実施する予定である。

謝辞

航空機監視レーダー(ARTS)データは,国 土交通省航空局交通管制部からご提供いただき ました。深く感謝を申し上げます。

参考文献

- [1]屋井鉄雄,平田輝満,山田直樹, "飛行場管 制からみた空港容量拡大方法に関する研 究",土木学会論文集 D, Vol.64 No.1, 122-133, March 2008.
- [2]平田輝満, 蒔田良知, 二見康友, "気象条件 に着目した滑走路処理容量の変動特性に関

図 4. 向い風成分に着目した着陸機の管制間 隔の発生頻度分布(上図:時間間隔,下 図:距離間隔)

する研究",第 54 回飛行機シンポジウム講 演集,No. 1B11,富山市,October 2016.

- [3]T. Yoshihara, A. Senoguchi, and N. Fujii, "Quantitative Analysis on Relationship between Arrival Air Traffic Flow and Meteorological Condition around Congested Airports in Tokyo Metropolitan Area", Proc. of the 2016 AISAT, APISAT-2016-Q1-2, Toyama, October 2016.
- [4]管制方式基準, 鳳文書林出版販売.
- [5]Treve, V., "EUROCONTROL Wake Program", WakeNet Europe 2015, Amsterdam, Netherlands, April 2015.
- [6]R. Pelchen-Medwed, L. Smaja, and A. Wennerberg, "Validation of the use of GBAS precision approaches for improved runway throughput in poor weather conditions", 11th USA/Europe ATM R&D Seminar, Lisbon, Portugal, June 2015.
- [7]国土交通省 Web ページ, "羽田空港のこれから" (<u>http://www.mlit.go.jp/koku/haneda/</u>)