電子航法研究所発表会 2014年6月

GNSS障害時の代替システムの動向

June 6, 2014

毛塚 敦 Atsushi Kezuka 吉原貴之

斎藤享

Takayuki Yoshihara Susumu Saito

本発表の内容

➤ 航空航法におけるGNSS障害の要因

➤ 代替システム構築における諸外国・ICAOでの動き

➤ DMEを用いた代替システムにおける測距誤差 シミュレーション

> まとめ、今後の予定

GNSSの脆弱性

社会の依存度大(一極集中)

GNSS信号の脆弱性

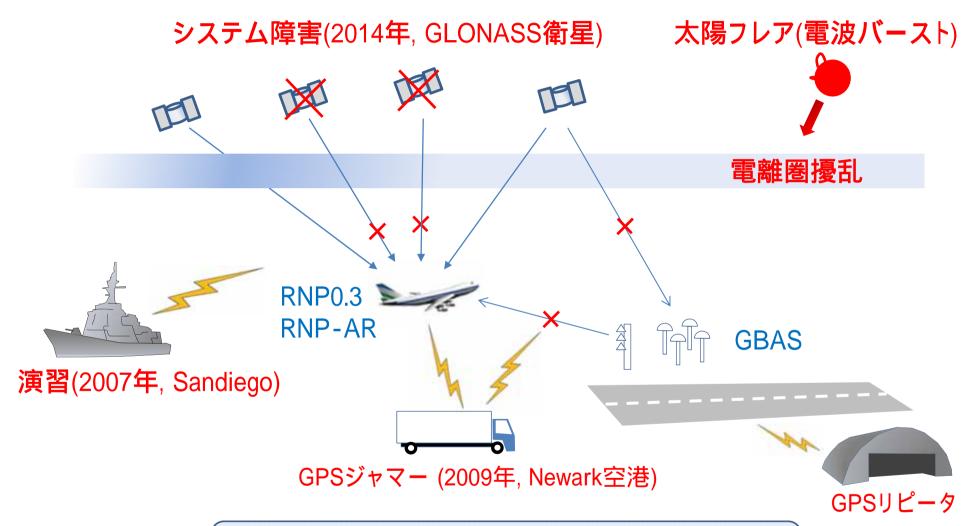
携帯

データネットワーク

交通

金融システム

Homeland Security Presidential Directive-7, The White House, 2003


GNSS: reliance and vulnerabilities, The Royal Academy of Engineering, London, 2011

内閣官房宇宙開発戦略本部, "GPSはじめ他国の測位衛星が使用不可能になるケースに関する考え方", 2010

航空航法におけるGNSS障害例

GNSS障害時でも安全で効率的な運航を維持するために代替システム(APNT)が必要

APNT: Alternate Position, Navigation, and Timing

APNT構築に向けた動き

米国

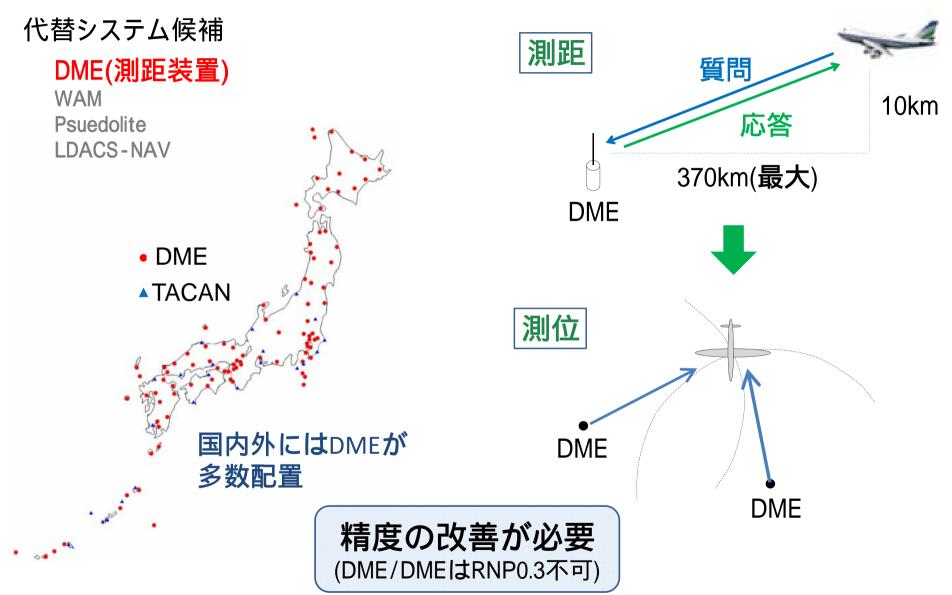
2025年までの交通量の倍増に対しPBN, ADS-B, TBO, RNAV, CSPOをGPSにより可能にする (FAA APNT白書2012)

FAAのマイルストーン

- Concept Requirements Definition in FY 2011
- Initial Investment Analysis Approval by FY 2014
- Final Investment Analysis Approval by FY 2016
- Solution Implementation Starting in FY 2017
- Subsequent In-Service Management

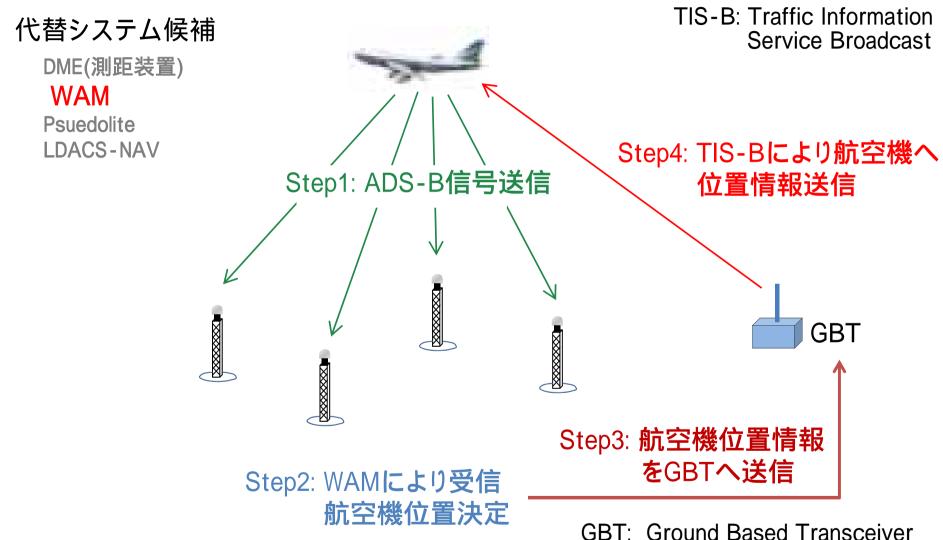
目標	Navigation		Surveillance		
測位精度	Accuracy(95%)	Containment(10 ⁻⁷)	Separation	NAC (95%)	NIC (10 ⁻⁷)
En Route	4 NM	8 NM	5 NM	92.6 m	0.2 NM
	2 NM	4 NM	O INIVI		
Terminal	1 NM	2 NM	3 NM	92.6 m	0.2 NM
LNAV	0.3 NM	0.6 NM	SINIVI		

欧州


DLR(ドイツ航空宇宙センター) によるLDACS-NAV開発

ICAO

航法委員会(ANC)によって、APNTがNSP(航法システムパネル)のジョブカードの一つに割り当てられる

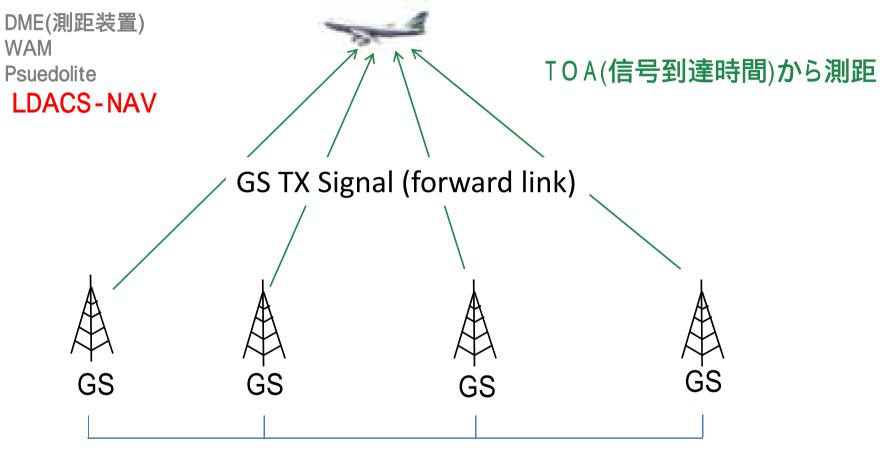

DMEによる代替システム(APNT)

DME: Distance Measuring Equipment

WAMによる代替システム(APNT)

国内に適用するには、位置情報を航空機へ伝達する手段の検討が必要

Pseudolite (疑似衛星)による代替システム



機上装備へのインパクト大 (標準化、認証、搭載コスト、メンテナンス)

LDACS-NAVによる代替システム

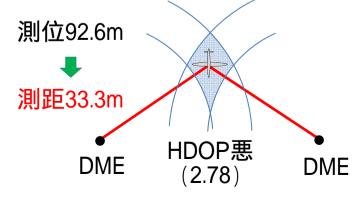
代替システム候補

GS: Ground Station

運用開始まで時間を要する(標準化,認証)

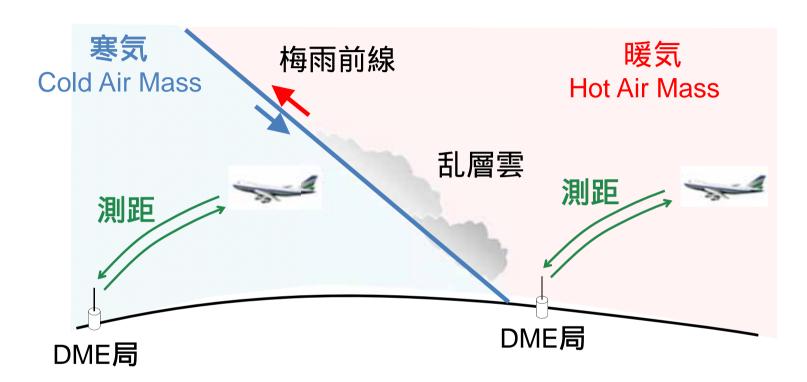
現行DMEの精度

APNTとしてDMEに着目


現行DME測距誤差					
要因		誤差量	改善検討		
機上インテロゲータ (質問機)		92.6m (0.05NM)	¹ K. Li, et al., Proceedings of the ION GNSS Conference, Portland OR, Sep. 2011		
地上トランスポンダ (応答機)		37.0m (0.02NM)			
電波伝搬	マルチパス対流圏遅延	74.1m (0.04NM)	()着目		
Total		129.6m (0.07NM)	 Matt Harris, et al., 25th ITM ION, sep.2011 E. Kim, et al., 31st DASC, oct 2012 		

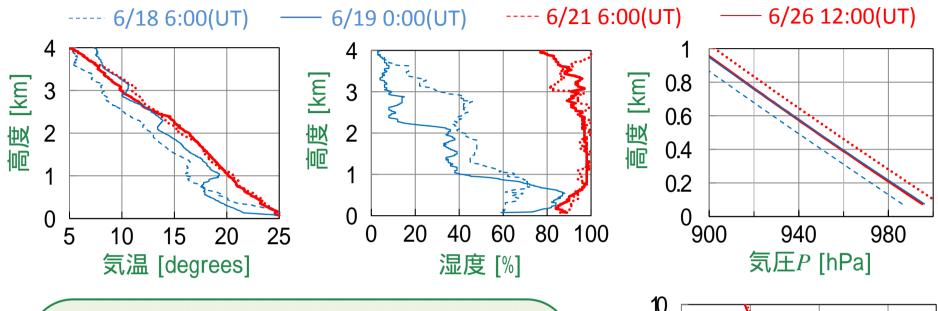
目標値 33.3m

()


- ▶ 補正モデルを用いて大まかな補正は可能
- > 気象・地形による誤差の変動分までは補正困難

気象現象等による測距誤差の変動を調査

気団による測距誤差変動解析モデル


気象現象による測距誤差の変動調査

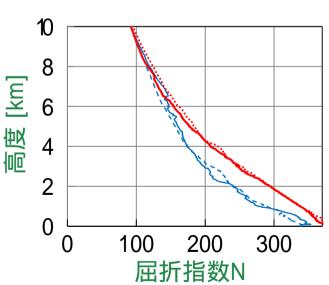
梅雨期(6月)のデータを使用

寒気団および暖気団の中でレイトレーシングを行い、大気伝搬遅延による測距誤差変動を定量的に算出

ENRI

ラジオゾンデによる寒気・暖気の気温・湿度・気圧

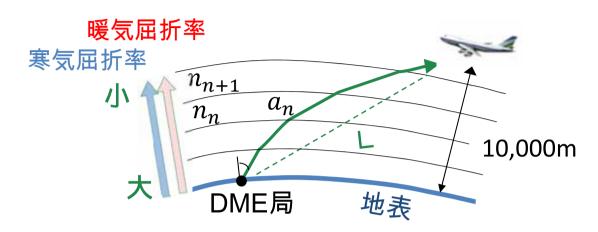
Smith-Weintaub's equation


屈折指数 N=77.6 $\frac{P_D}{T}$ +64.8 $\frac{P_V}{T}$ +3.776 × 10⁵ $\frac{P_V}{T^2}$

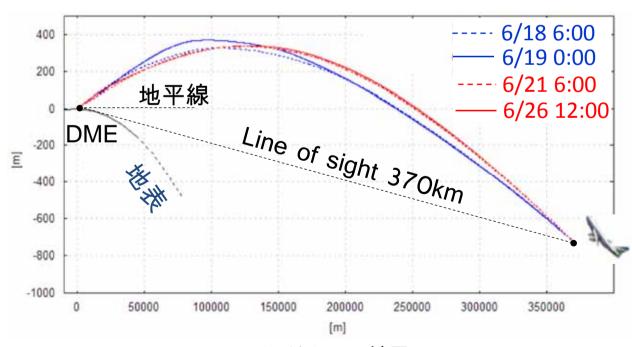
 P_D : 乾燥大気圧 = 気圧 $P - P_V$

 $P_V:$ 水蒸気分圧= 飽和水蒸気圧 P_{SW} ×湿度 [%]

T: 絶対温度 = 気温t + 273.15

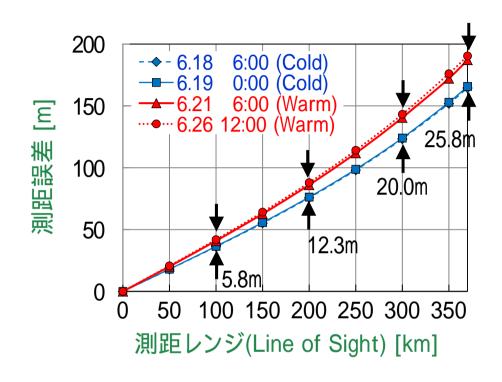

 $P_{SW} = 6.11 \times \exp\left(\frac{17.269 t}{t + 237.3}\right)$

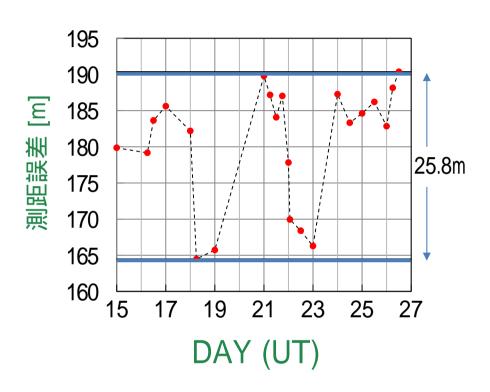
観測点が寒気および暖気のデータを選択


寒気・暖気における光線群

大気を層状に離散化

測距誤差


$$\Delta L = 2\sum_{i} n_i a_i - 2L$$



レイトレース結果

測距誤差変動の解析結果

寒気と暖気での測距誤差の差(誤差の変動)は、最大で25.8m (370kmレンジ)

- ▶ DME測距誤差全体の目標値(33.3m)のうち伝搬に割り当てられる量に比べて大きな誤差となる。
- > 誤差改善検討が必要

まとめと今後の予定

GNSS障害時の代替構築に関する諸外国・ICAOの状況

- ➤ FAAでのAPNT性能要件
- ▶ 候補となっている各種方式(DME, WAM, Psuedolite, LDACS-NAV)

DMEによるAPNTに着目し、対流圏伝搬遅延の気団による変動量を調査

- > 寒気・暖気の違いにより誤差が25.8m変動
- > 測距誤差目標値33.3mのうち電波伝搬へ割り当てられる 許容誤差よりも大

今後の予定

- ➤ 国内における航法・監視の状況から国内におけるAPNTの性能要件抽出
- ▶ 諸外国が提案する方式の適用性を精査または新規APNTコンセプト提案
- ➤ DME測距誤差改善のためのデータ提供

Thank you for your attention!