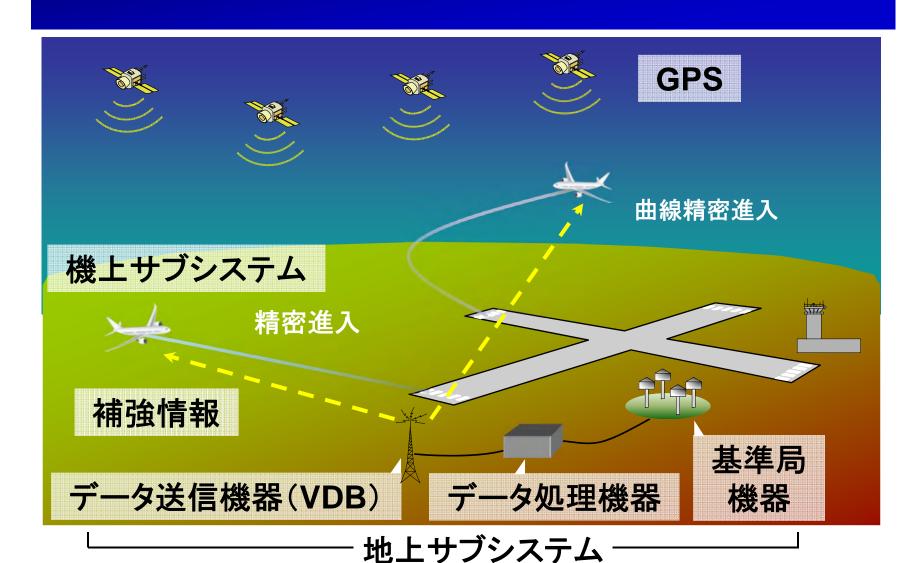


第14回電子航法研究所発表会

GLS装備機の パスアライン性能に関する検討

2014.6.6


航法システム領域 ※福島荘之介, 齊藤真二, 山康博

内容

- 1. GLSの概要(国際・国内動向)
- 2. 787によりGBAS飛行実証
- 3. フライトシミュレータによる性能検証
- 4. まとめ

1. GBASのシステム構成

3

VDB: VHF Data Broadcast

1. 海外動向

- 運用開始(精密進入 カテゴリーI)
- ブレーメン空港(ドイツ北部)
- ニューアーク空港(米国NJ州)
- ▶ ヒューストン空港(米国TX州)
- > ロシア
 - ☑ 準備•計画中
- ◆機材設置完了: マラガ(スペイン), シドニー(豪), 金浦(韓国), リオ(ブラジル)
- ◆計画中: フランクフルト(独), チェンナイ(印),

2012年2月

2012年9月

2013年4月

- Port Authority New York New Jersey
- United Airlines
- Honeywell Corporation
- •FAA

世界のGBAS配置

http://www.flygls.net by Airbus

1. GLS機上装備の動向

Boeing	GLS装備	主な搭載航空会社(計画も含む)
B737-NG	オプション	United*, Airberlin*, Qantas
B787	標準装備	ANA, JAL, United,
B747-8	標準装備	NCA, Lufthansa
B777	計画中	

Airbus	GLS装備	主な搭載航空会社(計画も含む)
A380	オプション	9 customers
A320	オプション	7 customers
A330/340	計画中	5 customers
A350	計画中	2 customers

ボーイング社は2030年に 大型商用機の約半数に GLSが搭載されると予測

国内787導入状況:

- ◆羽田路線:30便(国際線7便)
- ◆成田路線:16便

(2013.10 本邦航空会社運航便)

Multi-Mode Receiver

[J.Willett, "Rockwell-Collins Current GBAS Relevant Activities," 10th IGWG, June, 2009]

1. GLSの利点

- 従来システム(ILS)の制限解消
 - > 安定した進入経路(航法システム誤差:1m以下)
 - ▶ 周辺障害物件(周辺地形)の影響により進入経路の乱れを生じない
 - > 複数進入経路に対応

- → 地上機器設置・維持コスト減
- ▶ 1式の地上設備で全ての滑走路端に進入方式を設定可能
- 設置制限によるコース・オフセットが生じない → 運航安全に寄与
- ▶ 制限区域(クリティカル・センシティブエリア)の保護が不要
 - → 管制間隔短縮

- 将来運航による利点
 - > 自由度の高い進入経路設定が可能(高度運用)

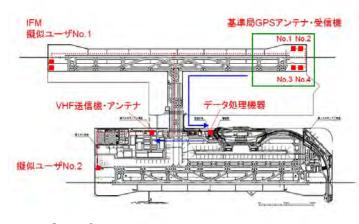
1. 最近のICAOの取り組み(ANConf-12)

- 2013-2028 Global Air Navigation Capacity & Efficiency Plan
 - 国と産業界の合意に基づく開発技術を活用するための15年間の戦略
- Aviation System Block Upgrades
 - 国,製造者,運航者,サービス提供者の責務を伴う5年毎の計画

PBN・GLS方式による安全性・利便性・効率性の向上

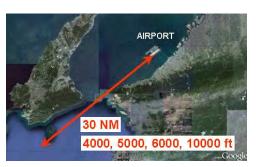
PBNとGLS方式の活用は、滑走路進入の信頼性と予測可能性を増加

- BLOCK 0(2013~2017年):現存技術の適用 → GLS (CAT I)
- BLOCK 1(2018~2022年):近い将来の技術 → GLS(CAT II/III)


1. GLSプロトタイプの開発

- > 安全性要求を検証可能なプロトタイプを開発
 - 国内電離圏環境でカテゴリーIの検証

- > 基本性能評価
 - 滑走路走行による放送コース検証(車両実験)
 - 経路上の航法システム誤差, VDB受信強度・誤り率(飛行実験)


Multi-mode Receiver

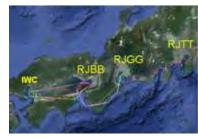
[機上マルチモード受信機]

Experimental Aircraft Beach Craft 99

[ENRI実験用航空機] 第14回 電子航法研究所発表会 2014年6月6日

[飛行実験経路の例]

2. 787による飛行トライアル



「関西国際	警空港で	MANA	787初	飛行1

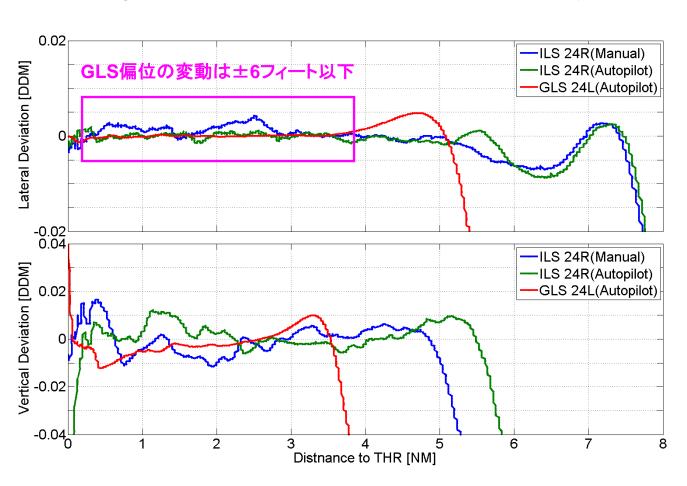
航空会社	期間	回数
Boeing 787SROV	2011年7月6日	1
ANA 787	2011年10月12日~20日	10
JAL 787	2012年4月1日~8日	9

* VMC状況下、VFRまたはVisual飛行

- ➤ 機器の相互運用性:正常

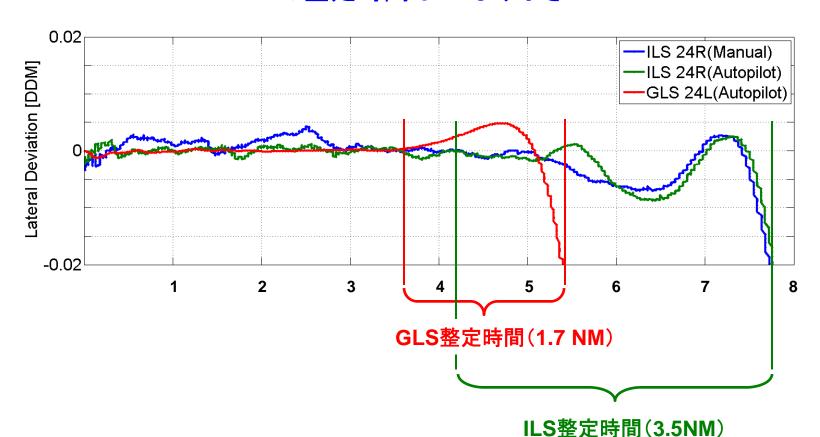
「GLSのパスはILSと同様で違和感なく, 非常に安定しており、PAPIとも整合していた」

➤ データ取得(AIMS), ILSと比較



[関西国際空港SROV時]

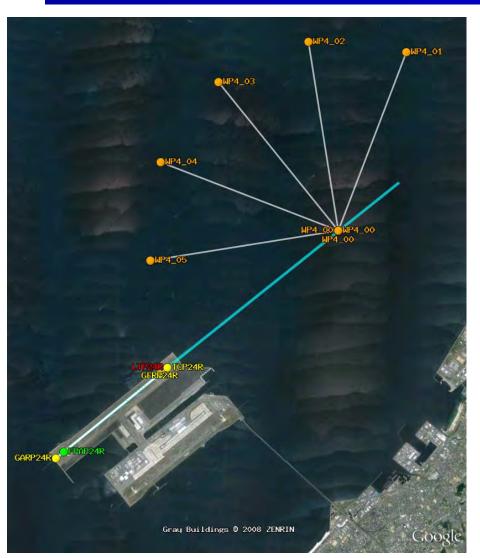
[JAL787によるプルービング飛行とデータ取得]

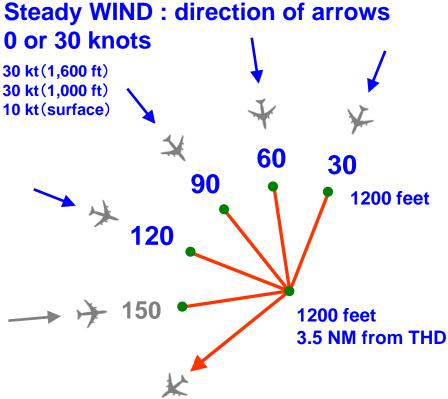

2. 787飛行検証結果

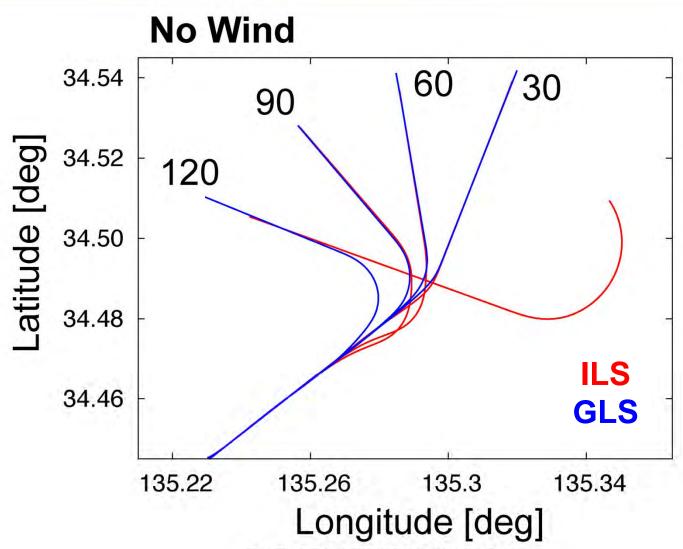
関西空港ILS(CAT-II)とGLSの比較

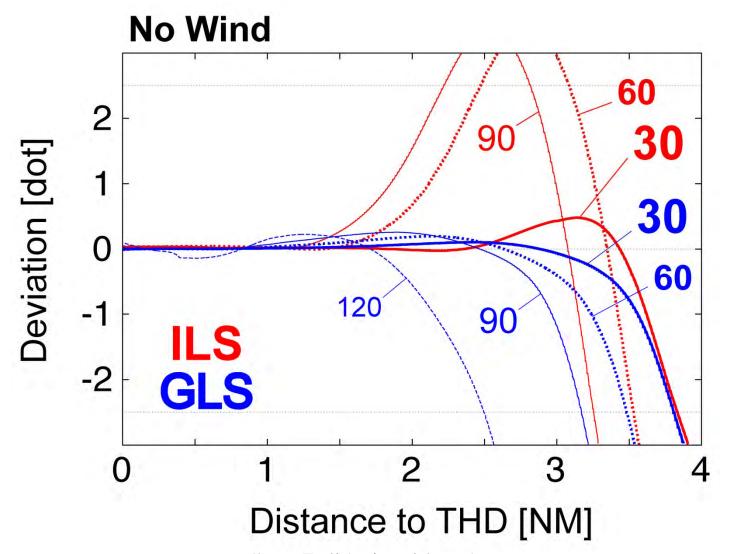
2. 787飛行検証結果

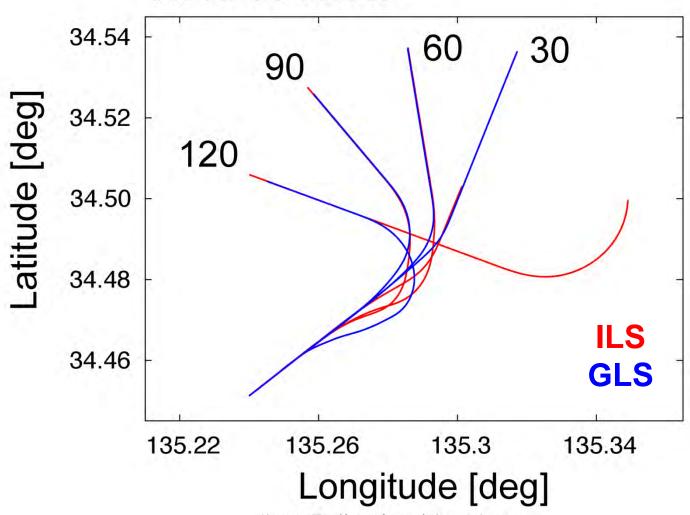
GLSの整定時間はILSより小さい

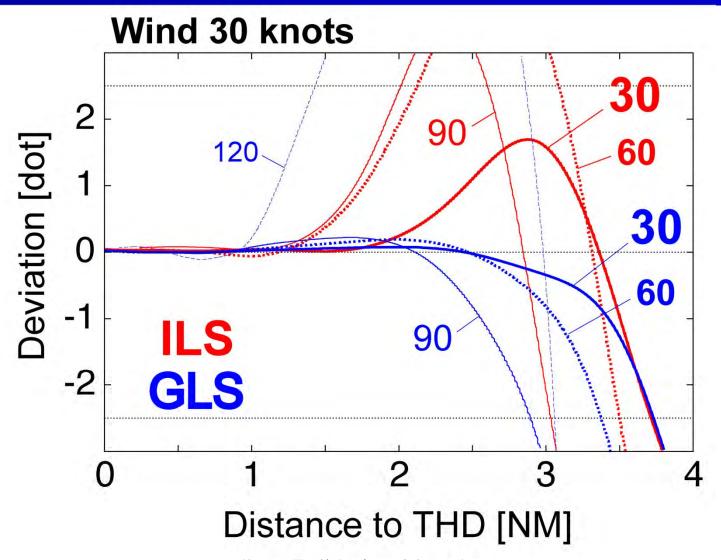

RWY 24L・24RへのLOC会合角は30度




第14回 電子航法研究所発表会 2014年6月6日




AUTO PILOT, TRACK-SEL


IAS 165 knots, TEMP 15 degrees Weight 350,000 lb

4. まとめ

- GLS・ILSのパスアライン性能比較のパラメータ
 - オートパイロットモード: TRACK-SEL
 - 会合角: 30, 60, 90, 120 度
 - 風: 追い風 0,30 knots(会合角と同一の)
 - 会合位置: RW末端から3.5 NM, 1200 feet
- 787のパスアライン性能は、ILSよりGLSが高いことを確認した
- GLSの安定した信号は、ILSに比較してパスアライン性能を向上させる利点がある

AFDS(アプローチモード)に入力される偏差のノイズ量も少ないため、より応答性能の高い制御則が採用可能となったためと推察

→ 将来,空域を有効活用できる技術

787飛行検証及びシミュレータ検証にご協力頂いた関係各位に深く感謝致します

国土交通省航空局 全日本空輸株式会社 日本航空株式会社 新関西国際空港株式会社