

8. DAPs利用のための 有効性評価と課題

監視通信領域 松永 圭左,古賀 禎

航空交通管理領域 瀬之口 敦

平成25年度(第13回) 電子航法研究所 研究発表会平成25年6月6-7日

ENRI

- 発表内容 -

- 1. DAPs (Downlink Aircraft Parameters)の概要
 - 航空機動態情報のATCへの利用
 - SSRモードSによるDAPsの概略
 - 導入時の問題点
- 2. DAPs評価試験の内容
- 3. 試験結果
- 4. 今後の検討事項
- 5. まとめ

1.1 (1) DAPsのATCへの利用

- ✓ SSR(二次監視レーダー)モードS
 - *** 監視機能(3次元位置, 識別番号)+ データリンク機能
- ✓ DAPs (Downlink Aircraft Parameters)

航空機の動態情報(選択高度,速度,等)をダウンリンク

途

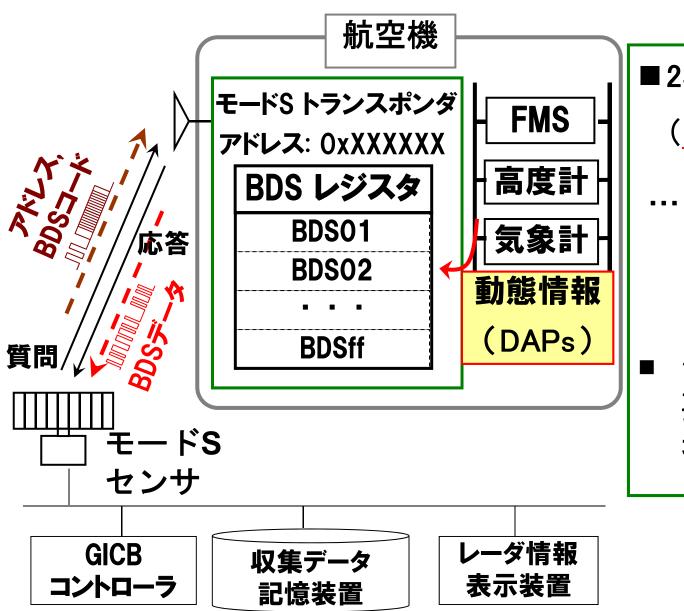
用

管制画面表示(状況認識の向上, 管制指示の確認)

- システムツールの入力データ
 - 衝突予測
 - トラッキング, 軌道予測計算

1.1 (2) DAPsレーダ表示画面(例)

実際の管制卓レーダー画面



実験システムのレーダー情報表示

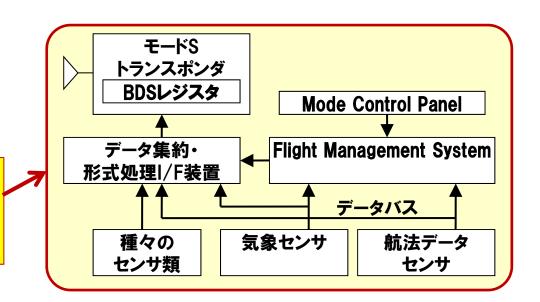
1.2 (1) SSRモードSによるDAPsの仕組み

- ■255 個の記憶領域
 - (BDSレジスタ)
- ・・・接続された機上装置の動態情報を格納
- 個別質問に 要求するBDSを 指定

<u>1.2 (2) BDSレジスタ概要</u>

BDSレジスタ(56bit×255)				
BDS⊐ード	データ内容	利用		
(Hex)				
10/17/18/19	データリンク能力通報			
20	航空機ID(便名)			
40	航空機選択高度意図	┍╻╻ ┍╌ ┼╬		
50	トラック・転回通報	EHS対応機		
60	磁方位•速度通報			
30	ACAS RA			
05	拡張スキッタ・位置(飛行中)			
44	気象情報(定期情報)	(将来利用)		
65	拡張スキッタ状態情報			

1.3 DAPs導入時の問題点


異常なDAPsデータが存在(ICAO作業部会等で報告)

データの<u>信頼性</u>の 確保が必要

多数の装置・複雑な構成,

機体による多様性

⇒ <u>運用中の機体からのダウンリンクデータ</u>をモニタする,

DAPsの有効性評価システムを開発

- ✓ 実データを用いた異常データ検出能力の検証
- ✓ 異常データ発生頻度の確認

ENRI

- 発表内容 -

- 1. DAPs (Downlink Aircraft Parameters)の概要
 - 航空機動態情報のATCへの利用
 - SSRモードSによるDAPsの概略
 - 導入時の問題点
- 2. DAPs評価試験の内容
- 3. 試験結果
- 4. 今後の検討事項
- 5. まとめ

2.1 DAPs評価試験の内容

➤ MIT-DAPs評価試験 (全44項目)

EHSに必要なBDSレジスタに関する試験

- · 静的情報試験(27項目)··· 構成·能力·状態等
- 動的情報試験(9項目)・・・ 速度等の値

<新規試験項目>

- ▶ 追加静的情報試験(22項目)
 - BDS10に関する試験(1項目)
 - <u>将来利用BDS</u>(BDS05/44/65)に関する試験(4項目)
 - レジスタ間の相関事項に関する試験(17項目)
- ▶ 通信・データ処理エラー検出試験(2項目)

<u>2.2 静的情報試験(MIT試験, 追加試験)の例 - BDS10 -</u>

BDS10(データリンク能力通報レジスタ)

ビット 番号	内容	ICAO規定	試験 番号
1: 8	BDSコード	= 0x10	TM13
10:14	予約領域	= 0	TE02
16	ACAS稼働状況	= 1	TE24
17:23	モードSサブネットバージョン	= 3, 4, 5	TM14
25	モードS固有サービス能力	= 1	TM15
33	便名情報能力	= 1	TM16
35	SIC(監視識別コード)能力	= 1	TM17

各ビット/領域値のICAO規定値との適合を確認

2.3 DAPs評価試験

- <u>- 通信・データ処理エラー検出試験 (新規) —</u>
- ゼロBDS BDSレジスタの全56ビットが'0'
- BDSスワップ

同一スキャンで、同一機体からダウンリンクした 複数のBDSレジスタ間で、全56ビットが同じ値となる

BDSスワップ発生例

		 				
BDS	スキャン時刻					
	08:05:35	08:05:45	08:05:55			
05	605f80c056966f	a3280030a40000	605f845303ce8d			
40	a3280030a40000	a3280030a40000	a3280030a40000			
50	fff8cf1f800489	a3280030a40000	ffb8cf1f80048a			
60	cc299f1b7ffc00	cc399f1b600401	cc399f1ba00400			

ENRI

- 発表内容 -

- 1. DAPs (Downlink Aircraft Parameters)の概要
 - 航空機動態情報のATCへの利用
 - SSRモードSによるDAPsの概略
 - 導入時の問題点
- 2. DAPs評価試験の内容
- 3. 試験結果
- 4. 今後の検討事項
- 5. まとめ

3.1 試験に使用した収集データ

■ 調布SSRモードS実験局

覆域: 250 NM

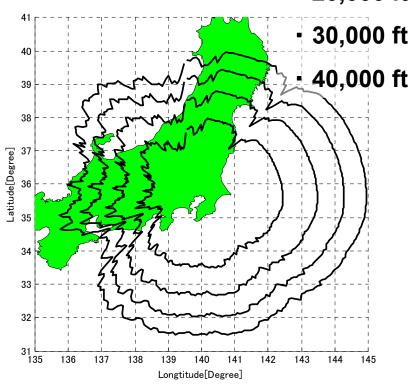
周期: 10 sec

ロ解析対象データ期間2011年6月~2012年10月(17ヶ月分)

機数: 3,192

航跡数: 256,536

ターゲット数: 39,091,727



覆域

高度:

- 10,000 ft
- 20,000 ft

3.2 (1) 静的情報試験結果 一結果例一

BDS20関連試験項目例

 $\langle TM23 \rangle$: BDSコード (BDS20中) = '0x20'

<TE12>: BDS20データ有効フラグ(BDS17中)

= BDS20実装済みフラグ (BDS18中)

	試験回]数	機数			
試験		異常		異	常発生機数	
番号	総回数	共市 回数	総機数		全試験異常	
		凹釵			(2回以上)	
TM23	405,619	0	3,173	0	0	
TE12	384,281	1,274	3,187	73	5	

ICNS2013 14

3.2 (2) 静的情報試験結果

試験20項目(/全試験49項目中)でエラー検出

- ➤ 不適切な機上装置の設定によるエラー
 - 機体で一貫したエラー
 - ・ 偶発的な(情報の設定タイミングに起因する)エラー
- ▶ 機上装置の故障によるエラー
- ➤ 不適切な入力データ(便名情報)によるエラー
 - ・入力データ/入力ツールの不具合

発生頻度

● <u>ゼロBDS</u> 約 10,000分の1(0.01%)

● BDSスワップ 約 百万分の1

試験	試験内容	試験回数		
番号		総回数	異常回数	
TE62	ゼロBDS	39,091,727	3,022	
TE63	BDSスワップ	39,091,727	27	

評価試験の有効性が確認できた

ENRI

- 発表内容 -

- 1. DAPs (Downlink Aircraft Parameters)の概要
 - 航空機動態情報のATCへの利用
 - SSRモードSによるDAPsの概略
 - 導入時の問題点
- 2. DAPs評価試験の内容
- 3. 試験結果
- 4. 今後の検討事項
- 5. まとめ

4. DAPs利用に向けた検討事項 - 最終的な対処方法一

エラー発生原因

・・・ 不適切な設定, 不適切なデータ入力, 偶発的(通信・データ処理)エラー, 機器故障

評価試験

✓ 試験項目毎のエラー検出

アプリケーションからの性能要件

••• 精度, 更新頻度, 許容誤り/欠損率, 等

対処方法

••• 異常判定(使用不可)対象の範囲/期間

<u>5. まとめ</u>

- DAPs有効性評価システムを開発
 - 一 静的情報試験(MIT試験項目+新規試験項目)
 - 一 通信・データ処理エラー検出試験
- 実データを用いた評価を実施
 - → 試験によるエラー検出が可能であることを確認
 - ✓ ゼロBDS, BDSスワップの存在(発生頻度)
 - ✓ 発生原因の分析

ロ 今後の課題

原因/性能要件を踏まえた対処方法の開発・検証

(Backup slides)

Annex10

Mode S interrogation pulse sequence

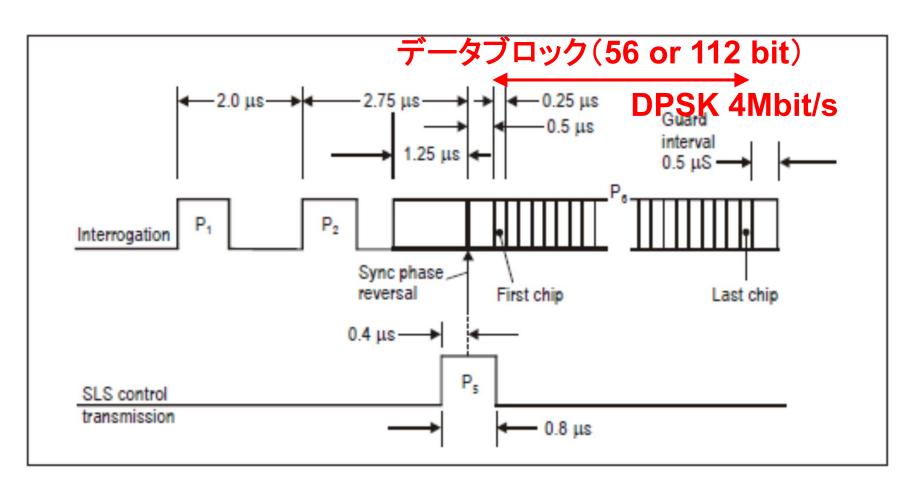


Figure 3-4. Mode S interrogation pulse sequence

Annex10 Mode S reply

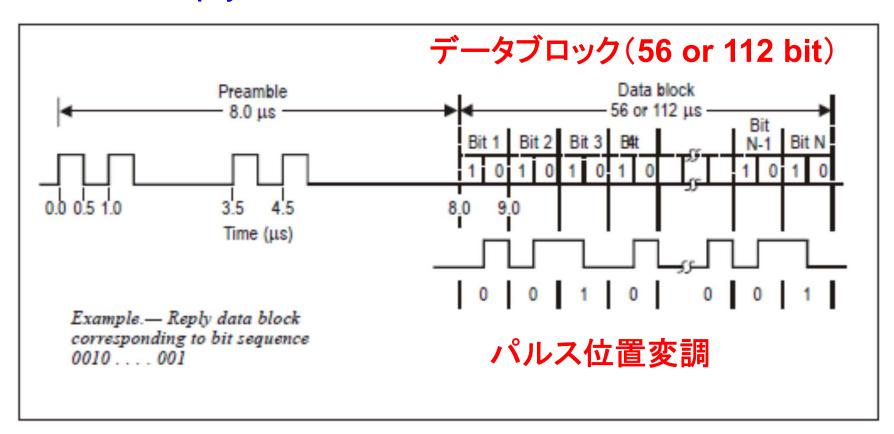
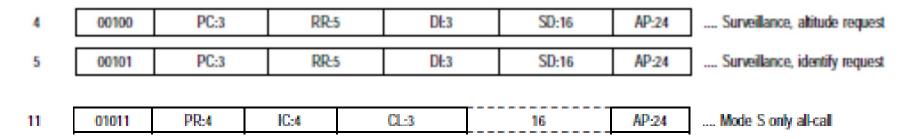



Figure 3-6. Mode S reply

Annex10 Mode S formats

interrogation or uplink formats

reply or downlink formats

4	00100	FS:3	DR:	DR:5		UM:6	AC:13	AP:24	Surveillance, altitude reply
5	00101	FS:3	DR:	DR:5		UM:6 ID:13		AP:24	Surveillance, identify reply
11	01011		CA:3		AA:24		Pl:24	All-call repy	
20	10100	FS:3	DR:5	UM	:6	AC:13	MB:56	AP:24	Comm-B, altitude reply
21	10101	FS:3	DR:5	UM	:6	ID:13	MB:56	AP:24	Comm-B, identify reply

3.1.2.3.2.1.3 AP: Address/parity. This 24-bit (33-56 or 89-112) field shall appear in all uplink and currently defined downlink formats except the Mode S-only all-call reply, DF = 11. The field shall contain parity overlaid on the aircraft address according to 3.1.2.3.3.2.

BDS code	The maximum update Interval [sec]
40	1.0
50	1.3
60	1.3

- > The maximum update Interval
- = The time between availability of data that causes a change in Register and the time that the change is made to Register
- ➤ The parameter data will be expired (status bit and data field be set to '0') in twice of maximum update interval.