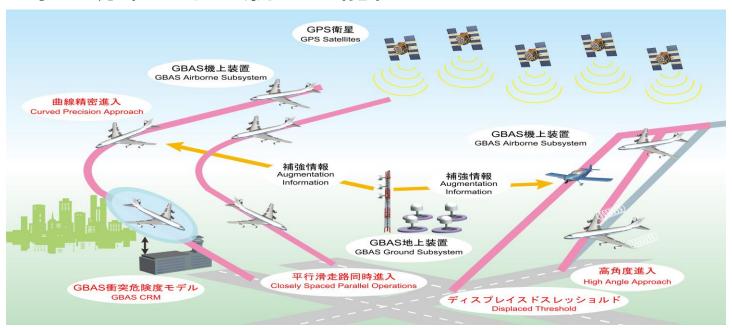


ICAO CRMにおける高さ損失モデルの評価

電子航法研究所 航法システム領域

※藤田征吾, 伊藤正宏¹, 福島荘之介, 山康博, 武市昇², 長井丈宣³, 中西善信⁴

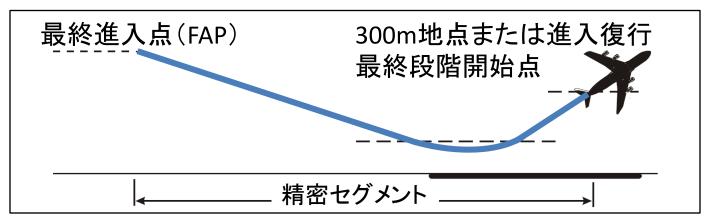
> 1現 文部科学省研究開発局 2名古屋大学大学院工学研究科 3全日本空輸株式会社 4株式会社 NTTデータ・アイ


内容

- ・ 背景と目的
- 進入復行中の高さ損失モデル(Pinskerモデル)
- 高さ損失モデルの評価
 - モンテカルロシミュレーション
 - B737-700フライトシミュレータ(B737-700 FFS)による進入復行模擬実験
- まとめと今後について

GBASによる高度な飛行方式

- GBASの特長を生かした高度な飛行方式
 - 空域, 空港の処理容量拡大, 騒音回避, 燃料消費削減 等の効率的な運航の可能性



- ・ この実現には、飛行方式設定基準の検討が必要
 - 衝突危険度モデルのアップデート
 - →航空機偏位の定量的評価が必要

ILS衝突危険度モデル(CRM)

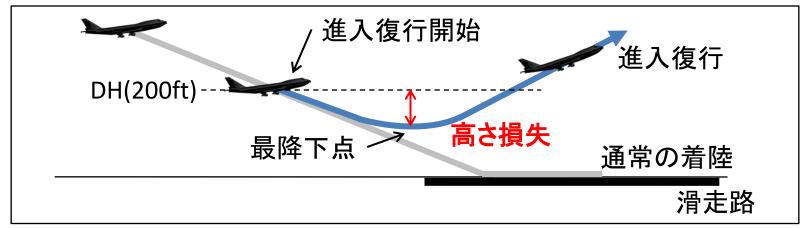
- ILS進入方式の精密セグメント(最終進入及び進入 復行)における障害物間隔評価手法
 - 航空機偏位を確率分布で表現し、障害物との衝突危険度 を定量化(障害物との衝突確率を計算)
 - 航空機偏位(総合システム誤差(TSE=NSE+FTE))
 - 航法システム誤差(NSE): 航法性能に関連
 - 飛行技術誤差(FTE): 航空機性能に関連

出典: PANS-OPS, Vol. II, Part II(Doc 8168-OPS/611)

背景

- ILS CRMは1960~1970年代に収集した飛行データ(実機, フライトシミュレータ)に基づき開発
- 既存のCRMは、現在の航空機や地上型衛星航法補 強システム(GBAS)の性能が反映されていない

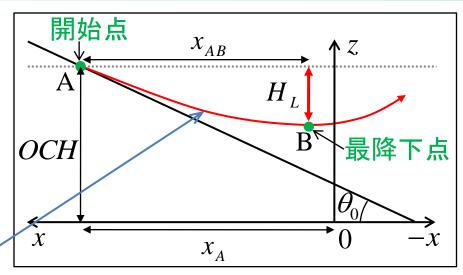
航空機性能の向上、GBASによる航法性能向上に伴う既存CRMの改善・拡張の必要性 (計器飛行方式パネル(IFPP): CRMの改善を検討中)

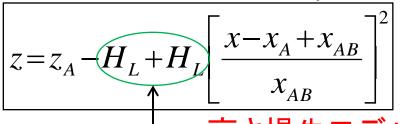


- 進入復行中の高さ損失に着目(航空機性能に関連)
 - ILS CRMの高さ損失モデルは飛行特性に基づき生成
 - →航空機性能向上による改善の可能性がある
 - IFPPでは高さ損失モデルの検証が行われている

目的

- 進入復行における高さ損失モデルの評価
 - _ モンテカルロシミュレーション
 - ・ 高さ損失モデル(既存入力パラメータ利用)
 - B737-700 FFSによる進入復行模擬実験
 - ・高さ損失モデルとシミュレーションデータの比較
 - → 高さ損失モデルの検証・アップデートの検討

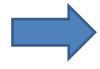

進入復行中の高さ損失



進入復行モデル(鉛直方向)

進入復行モデル(鉛直方向)

- 主にフライトシミュレータで取得したデータに基づき生成
- 進入復行パス(OCA/H以降の 沈み込み上昇を開始するま での間)は放物線と仮定



 H_L :高さ損失

X_{AB} :X偏位(A→B)

 X_A : OCHのx座標

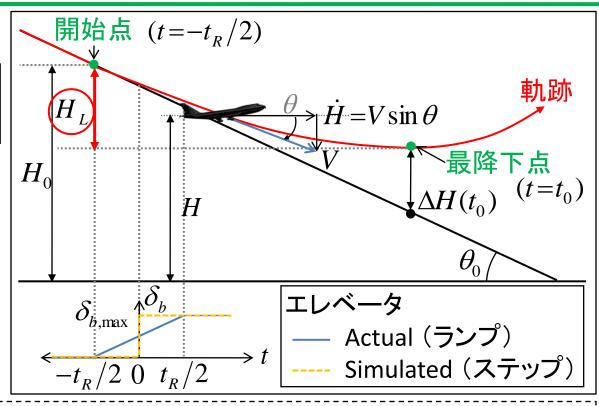
高さ損失モデル(Pinskerモデル)を利用

進入復行モデルを用いて進入復行時 の航空機偏位の確率分布を生成

ILS CRMの改善・拡張のために見直しが必要

→ 高さ損失モデルの検討

高さ損失モデル


高さ損失モデル

$$H_L = -\dot{H}_0 \underbrace{\left(t_0 + \frac{t_R}{2}\right)} - \underline{\Delta H(t_0)}$$

経過時間

(開始点→最降下点)

 $ightharpoonup H_L$ の計算のために $t_0, \Delta H$ が必要

 H_0 :初期垂直速度 (negative value)

V:進入復行中の速度

 θ_0 :フライトパス角

 δ_b :昇降舵偏向

 t_R :パイロットがエレベータ操作を開始し、エレベータがフル 状態になるまでの遅延時間(エレベータ操作開始まで のパイロット反応時間はゼロと仮定)

 t_0 :最降下点に達するまでの経過時間

 $\Delta H: t=t_0$ での高度と t=0 での速度で決定される直線上で

の高度との差分

高さ損失モデル

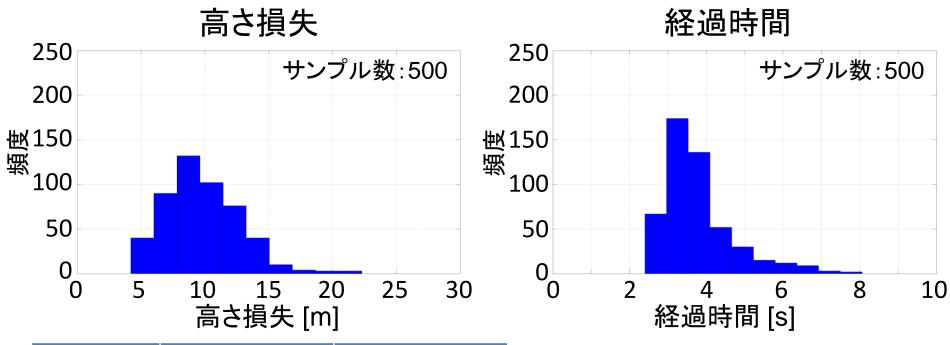
- 高さ損失モデル(Pinskerモデル)
 - 縦系線形微分方程式から導出されたパラメータの関係式により高さ損失をモデル化(1950~1960年代に開発) (導出過程で初期垂直加速度・初期垂直躍度を無視)
 - 入力パラメータ(主に確率分布で表現)
 - 初期垂直速度,垂直加速度増分,ダンピング係数,エレベータ遅延時間,短周期ピッチ振動期間
 - 高さ損失の計算
 - パラメータ関係式から経過時間と高度差分をニュートン法により求め、高さ損失を算出

IFPPでは、現在、高さ損失モデル(Pinskerモデル)の検証が行われている.

高さ損失モデルの評価(1)

モンテカルロシミュレーション

- 高さ損失モデル(Pinskerモデル)
 - ・ 高さ損失モデルの既存入力パラメータ(確率分布)
 - ・サンプル数:500


高さ損失モデルの既存入カパラメータ

入力パラメータ	単位	分布型	平均	標準偏差	最小	最大
初期垂直速度	m/s	対数正規分布	3.66	0.61	1.58	5.60
垂直加速度増分	g	正規分布	0.20	0.07	0.07	0.50
ダンピング係数	-	一定	0.5	0	0.5	0.5
エレベータ遅延時間	S	一定	0.5	0	0.5	0.5
短周期ピッチ振動期間	S	一定	8	0	8	8

※B737-700(Cat C)を想定し、140 kt VAT_{max}のパラメータを利用

シミュレーション結果

統計量	高さ損失 [m]	経過時間 [s]
平均	9.81	3.78
標準偏差	2.93	0.93
最小	4.19	2.40
最大	22.30	8.06

本実験結果とフライトシ ミュレータ実験における 高さ損失の比較を行う.

既存入カパラメータの最悪な組み合わせが要因

高さ損失モデルの評価(2)

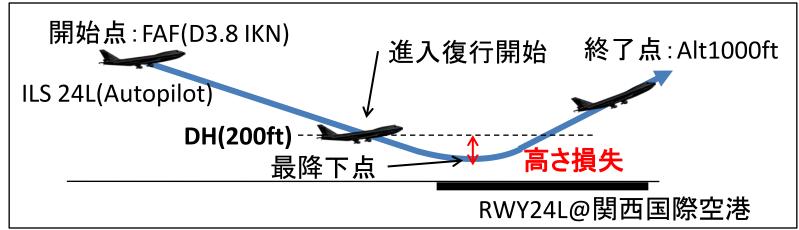
フライトシミュレータ実験

- フライトシミュレータにより、進入 復行を模擬し、高さ損失を評価

機材:B737-700(航空機区分:C)

飛行モード: Autopilot

飛行方式:ILS 24L@関西国際空港


開始点:FAF(D3.8 IKN)

終了点:Alt1000ft

B737-700 FFS

B737-700フライトシミュレータによる進入復行模擬

フライトシミュレータ実験

進入復行模擬における条件設定(合計30フライト)

総重量	フライト数	風 [kt]	気温 [deg]
Normal (111000lb)	9	-10, 0, +10	5, 15, 25
Heavy (129000lb)	11	-10, 0, +10	-20, 5, 15, 25, 40
(154800lb)	1	+15	-20
Light (93000lb)	9	-10, 0, +10	5, 15, 25

[※] 風の「-」は追風、「+」は向い風を意味する.

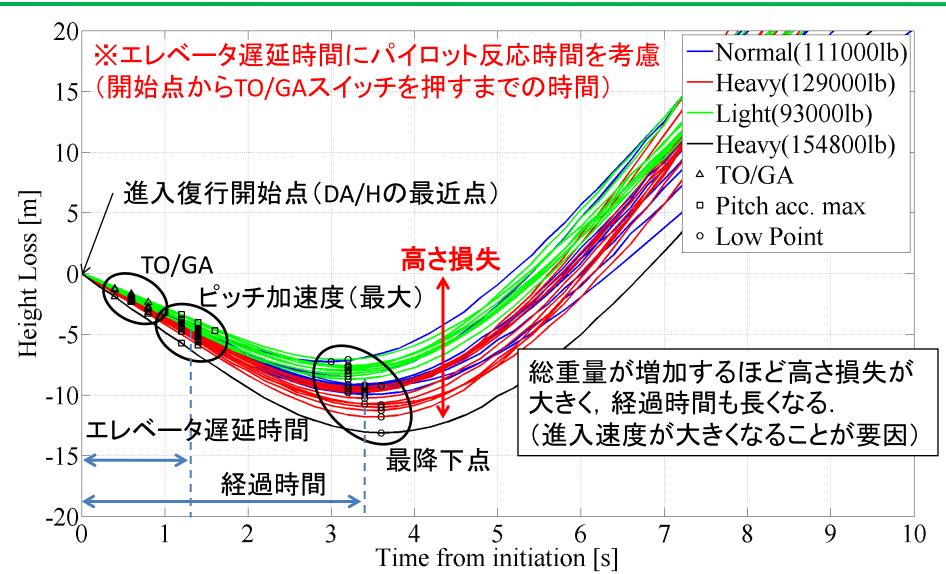
取得データ(小数点以下4桁まで出力,更新間隔:0.2s)

パラメータ	単位	パラメータ	単位
Time(H,M,S)	-	Roll, Pitch, Yaw(Rate)	[deg/s]
Position(Lat, Lon)	[deg]	Roll, Pitch, Yaw(Acc.)	[deg/s2]
Altitude(Pressure, Radio)	[ft]	Angle of Attack	[deg]
Velocity (TAS,IAS,CAS,GS)	[kts]	Flight Path Angle	[deg]
Acceleration(X, Y, Z)	[ft/s2]	TOGA SW Flag	-
Roll, Pitch, Yaw(Angle)	[deg]	•••	

進入速度(取得データ)

進入速度(IAS)

総重量	平均 [kt]	最小 [kt]	最大 [kt]
Normal (111000lb)	128.80	124.68	130.76
Heavy (129000lb)	137.87	131.46	138.60
(154800lb)	(151.40)	(151.40)	(151.40)
Light (93000lb)	117.46	114.75	117.80
All	129.48	114.75	151.40


初期垂直速度

総重量	平均 [m/s]	最小 [m/s]	最大 [m/s]
Normal (111000lb)	3.47	3.14	3.80
Heavy (129000lb)	3.83	3.56	4.26
(154800lb)	(4.77)	(4.77)	(4.77)
Light (93000lb)	3.17	2.85	3.50
All	3.55	2.85	4.77

CRMの入力パラメータ: 平均3.66[m/s], 最小1.58[m/s], 最大5.60[m/s] → CRMの方が初期垂直速度の最小~最大の幅が大きい.

実験結果(高さ損失)

高さ損失モデルとの比較

高さ損失、経過時間、遅延時間の比較

高さ損失モデル (モンテカルロシミュレーション) 統計量			B737-700 FFS			
	高さ損失 [m]	経過時間 [s]	遅延時間 [s]	高さ損失 [m]	経過時間 [s]	遅延時間 [s]
平均	9.81	3.78	0.5 (入力値)	9.34	3.33	1.31
標準偏差	2.93	0.93	-	1.41	0.17	0.13
最小	4.19	2.40	0.5	7.09	3.0	1.0
最大	22.30	8.06	0.5	13.12	3.6	1.6

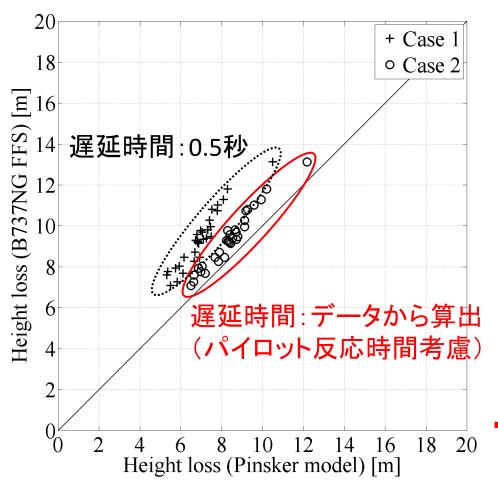
既存入カパラメータの最悪な組み合わせが要因

- 高さ損失・経過時間の平均値に大きな違いはなく、高さ損失モデルのモデル構造としては概ね妥当と考えられるが、B737-700 FFSの方が最大値が明らかに小さいことから入力パラメータの検討が必要と考えられる.
- エレベータ遅延時間の平均は1.3秒であり、高さ損失モデルの0.5秒(入力値)に比べ、大きな値であった。

門高さ損失モデルの妥当性評価

- 高さ損失モデルの入力パラメータ
 - 既存入力パラメータは当時のフライトデータに基づき設定
 - →入力範囲が大きく、最大値は最悪な組み合わせが要因
 - エレベータ遅延時間にパイロット反応時間は考慮されていない (フライトシミュレータ実験ではパイロット反応時間を考慮)

各フライトにおける適切なパラメータ設定が必要


- 高さ損失モデルの妥当性評価
 - 入力パラメータはできる限り各フライトデータから算出
 - 初期垂直速度, 垂直加速度増分: 各フライトデータ
 - ・ピッチ振動時間,ダンピング係数:既存入カパラメータ
 - パイロット反応時間の有無により評価
 - Case 1: エレベータ遅延時間を0.5秒に設定
 - Case 2: エレベータ遅延時間にパイロット反応時間考慮

高さ損失モデルの妥当性評価

Case 1: エレベータ遅延時間を0.5秒に設定

Case 2: エレベータ遅延時間にパイロット反応時間考慮

統計量	モデル誤差 [m]			
秋旬 里	Case 1	Case 2		
平均	2.39	0.96		
標準偏差	0.54	0.34		
最小	1.44	0.32		
最大	3.52	1.61		

Case 2の方がより正確な高さ損失が得られた. ただし, 若干過小評価する傾向がみられる.

→入力パラメータの改善が必要 (モデル構造は概ね妥当)

まとめと今後について

- ILS CRMの進入復行中の高さ損失モデルの評価
 - モンテカルロシミュレーション
 - B737-700 FFSによる進入復行模擬実験
 - 高さ損失モデルの妥当性評価

高さ損失モデルのモデル構造は概ね妥当であるが、 入力パラメータの適切な設定が必要. (入力パラメータを適切に設定すれば新たな機体でも 利用可能と考えられる)

- 今後について
 - 入力パラメータの詳細な解析
 - GBASの航法誤差を考慮した場合の障害物評価表面との 関係を評価する.