

研究長期ビジョンの見直し について

(独) 電子航法研究所 研究企画統括 山本 憲夫

内容

- 1. 2008年版研究長期ビジョン
- 2. 長期ビジョンの見直し
- 3. 見直し後の長期ビジョン
- 4. CARATSとの関連
- 5. まとめ

1. 2008年版研究長期ビジョン

- ◆作成の背景
 - -今日の航空交通...-
- 空域/空港での交通量増
- 効率的運航の要望大
- 環境保全の必要性大

世界的傾向

- ✓トラジェクトリ・ベース運航
- ✓ 広域データリンク; CDM*
- ✓衛星航法の活用

NextGen

* 協調的意志決定

-重点研究分對

空港/空港面 の高度運用

で 200円 は 200円 (1967年) の 数 立以来 我が 関 に 20 ける 観子 板 法 (電子 技術 機能的な空域設定と トラジェクトリ管理

- m概を果たしてきた。 しかしながら微立

高精度·高信頼性 かつフレキシブル な基盤的航法技術

> 航空機·運航者· 管制官連携のため

パフォーマンス分析 によるボトルネック 抽出と効率向上

H18年度検討開始。H20/7 公表

-研究ロードマップ-

重点研究分野、現在実施中の研究課題、その発展

H21(2009)年

H32(2020)年

	H21	H22	H23	H24	H25	H26	H27	H28	H29	H30	H31	H32
	2009	2010	2011	2012	2013	2014	2015	2016	2017	2018	2019	2020
パフォーマンス分析による	ATMパフォーマンス評価と分析			トラジェクトリ管理のパフォーマンス分					アンス分析			
ボトルネック抽出と効率向上	管制官ワークロード分析				ヒューマンエラー低減技術			ヒューマンファクタを考慮した安全確保				
機能的な空域設定とトラジェクトリ管理	ターミナル空域の評価手法				機能的なターミナル空域設定			戦略的かつ統合的な空域設計と経路運用				
	洋上空域運用方式の改善				飛行経路の動的運用推進							
	RNAV経路安全性評価				安全性解析ツールの開発			全飛行フェーズ安全性評価と安全性向上				
	トラジェクトリモデルの開発				トラジェクトリモデル実用化			高密度空域でのトラジェクトリ管理によ				
								る運航効率向上				
								機上監視によるトラジェクトリ管理の補				
航空機・運航者・管制官連 携のための情報通信基盤	機上監視による交通情報交換				機上監視による管制間隔維持				版工品代によるドランエアにり自在の福			
	管制官用監視データリンクの開発				トフンェクトリ官埋のための動体情報父換							
	航空通信ネットワーク ATN				システム間情報管理 SWIM							
	対空高速データリンク媒体の評価				航空用高速通信技術の開発							
	監視情報処理方式(センサ結合, 関連情報統合, トラジェクトリ管理対応)											
	電波環境、混信・干渉問題(各分野に共通な継続課題)											
空港/空港面の高度運用	マルチラテレーション実用化				トラジェクトリ管理による空港高度運用							
工化》工作曲以同及是川	ASMGCS実用化				空港面航法の実現				CAT-IIIc GBAS実用化			
高精度・高信頼性かつフレ キシブルな基盤的航法技術	CAT-I GBAS実用化				CAT-II/III GBAS実用化							
	GNSS曲線進入の要件検討								合するGBAS動的進入経路設定			
	MSAS性能向上と精密進入実用化				ABAS高度化			CAT-1 ABAS実用化				

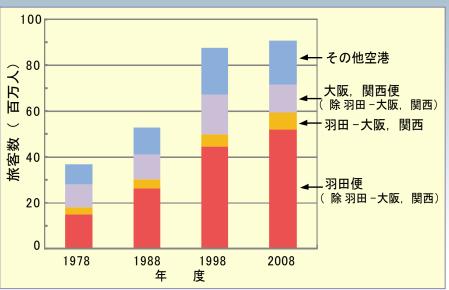
- 長期ビジョンの活用 -

- 新規研究の立案, 評価
- 将来の航空交通システムに関する研究会 (航空局CARATS)
- 将来航空技術開発計画の支援 (NEDO*)
- ENRI ATM/CNS国際ワークショップ (EIWAC2009, 2010)
- 次期研究所中期計画作成 (2011年~)

2. 研究長期ビジョンの見直し

[1] 社会状況の変化

- 首都圏空港の拡張,一極集中
- 国際線,上空通過機增加
- CARATSの策定

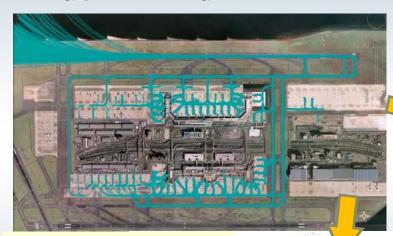

[2] 研究所で得た新たな知見や技術

- ①空港画交通の分析
- ② 飛行軌道予測
- ③ 混雑空域での電磁干渉 など

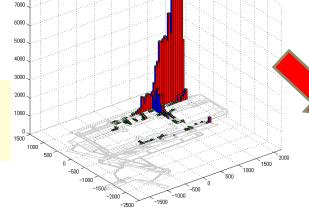
[1] 社会状況の変化

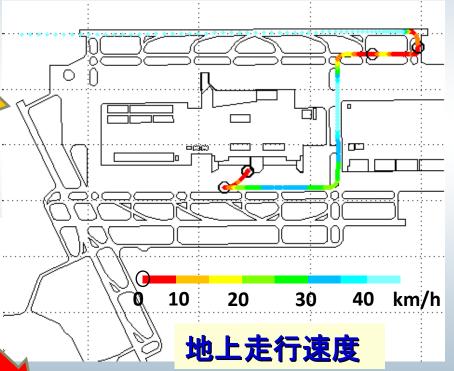
首都圏空港の拡張,一極集中

- ●国際線,上空通過 機増加
- CARATSの策定 → 行政二一ズ明白化



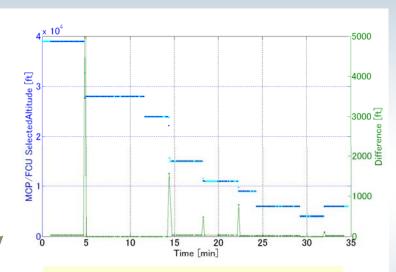
[2] 新たな知見や技術


①空港面交通の分析


✓ 新しい監視システム(マルチラテレーション)利用

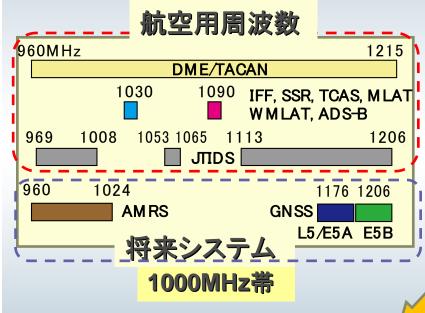
離陸走行の軌跡

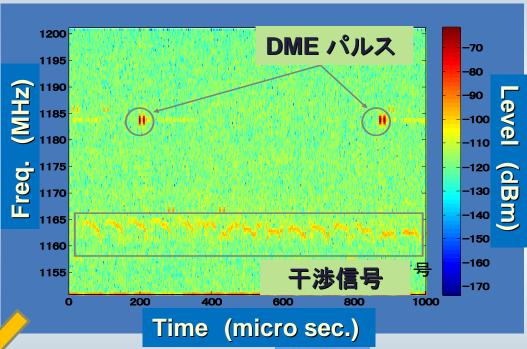
誘導路上で の渋滞頻度

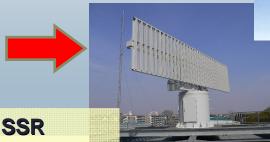

地上交通管理の高度化!

② 飛行軌道予測

✓ 飛行情報ダウンリンク機能 (DAPs)付き 実験用レーダ利用


機上での選択高度情報

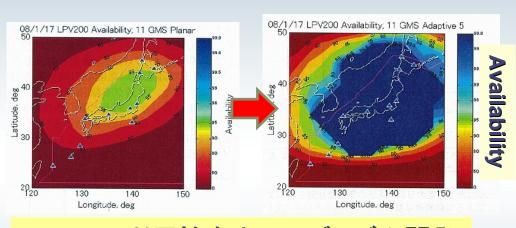

飛行軌道予測の高度化!


③混雑空域での電磁環境

✓ 電磁環境測定装置の開発と活用

現用のシステムと将来シス テムとの両立性の検証

GNSS


*

11

④ GNSS信号への電離圏の影響

✓ 東南アジア地域電離圏データ蓄積・分析

東南アジア地域の電離圏密度分布

MSASの利用性向上アルゴリズム開発

GPS

広範囲で信頼性の高い GNSS 補強システム確立!

MSAS

3. 見直し後の研究長期ビジョン

- 課題の具体化
 - ✓ 首都圏空港付近/面の混雑低減
 - ✓ 上空通過機と国内離着陸機の調和
 - ✓ 交通量増加環境での定時性維持
 - ✓ 衛星航法システムの運用拡大
 - ✓ 燃費節減等に寄与する運航効率化 など
- 短·中·長期目標設定

短: 広範囲高精度な交通分析

中:課題解決案提案, 検証

長:システム構築,評価,実用化支援

- 改訂版研究ロードマップ -

	V 1415 180 1			
	H22 (2010)	H 26 (2014)	H30 (2018)	H34 (2022)
飛行中の 運航高度化 (航空路の 容量拡大)	飛行経路の効率向上 トラジェクトリ予測手法開発 ATMのパフォーマンス、引	トラジェクトリ管	1 = 82 -	空域、空港面を含む クトリ管理技術確立 ターミナル空 域容量拡大 定時性向上
	モードS通信技術	飛行情報交打		記報低減 航空機 間隔維持 燃費向上
空地を結ぶ 技術,安全 性向上技術 (安全で効率 的な運航の 実現)	監視技術の高度化		性能要件に基づく(統合)監視技	支術 状況認識 能力向上
	航空用データリンクの評価	汎用	高速通信技術の次世代航空通信への	適用 効率性向上
	電波伝搬解析,電	電波混信問題	電波資源問題,電流	
	管制官ワークロード分析	ヒューマンエラ	ー低減技術 ヒューマンファク	タを考慮した運航方式 安全性向上
空港付近で	MSAS高度化, ABASの研究	E ABAS?	高度化 CAT-I	ABAS実用化 離着陸段階の 容量拡大
の運航高度 化 (混雑空港 の処理容	CAT-I GBAS実用化	GNSSによる高力テ	ゴリ運航	空港容量拡大
	GNSS曲線進入の要件検討	GNSSを利用した曲線は	進入方式 GBAS動的進入網	経路設定
量拡大)	空港面交通分析空	巻面トラジェクトリ予測手法開!	発 空港面・ラジェクトリ管理技	
	:運航効率化	:軌道ベース運航	:監視,通信関連	:衛星航法関連 14

研究関連性、我が国課題への対応等

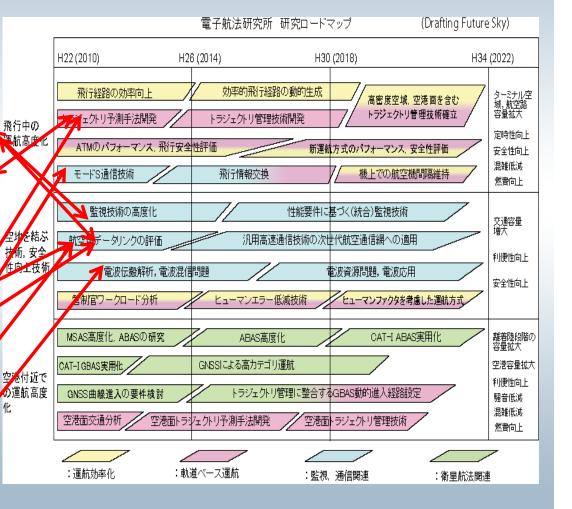
(4):電波環境

4. CARATSとの関連 ATM W/G ATM 関係

- ◆柔軟な空域編成
- ◆協調的軌道生成(運航 前)
- ◆リアルタイム軌道生成 (運航中)

高密度 W/G

- ▶空港面運用効率化
- ◆ 合流地点時間べ-序づけ
- ◆ITPによる間隔短縮



✓ CNS関係 情報管理 W/G

- ◆情報管理基盤整理
- ◆ 空地での情報共有基盤 ^{飛行中の}
- ◆協調的意志決定

CNS W/G (C)

- ◆管制承認
- ◆軌道ベース運用
- ◆飛行情報サービス
- **◆**ATN
- ◆通信メディア

5. まとめ

- ■2008年版研究長期ビジョン
- ■長期ビジョンの見直し
 - > 社会状況変化,新しい技術
- ■見直し後の長期ビジョン
 - > 課題具体化,短·中·長期目標設定
 - ▶ 3重点分野
- ■CARATSとの関連
 - ➤ CARATS W/G の具体的施策に沿った 研究実施体制

世界の将来航空交通システム確立に貢献