SSRモードSによる 航空機の動態情報の取得技術 について

機上等技術領域 古賀 禎 ATM領域 瀬之口 敦 機上等技術領域 上島 一彦

発表内容

- 1. 背景
- 2. 動態情報の取得プロトコル・システム
- 3. 動態情報のモニター試験
 - 3.1 データリンク能力
 - 3.2 動態情報
- 4.まとめ

.背景

SSRモードS

= SSR + 監視性能向上 + データリンク機能

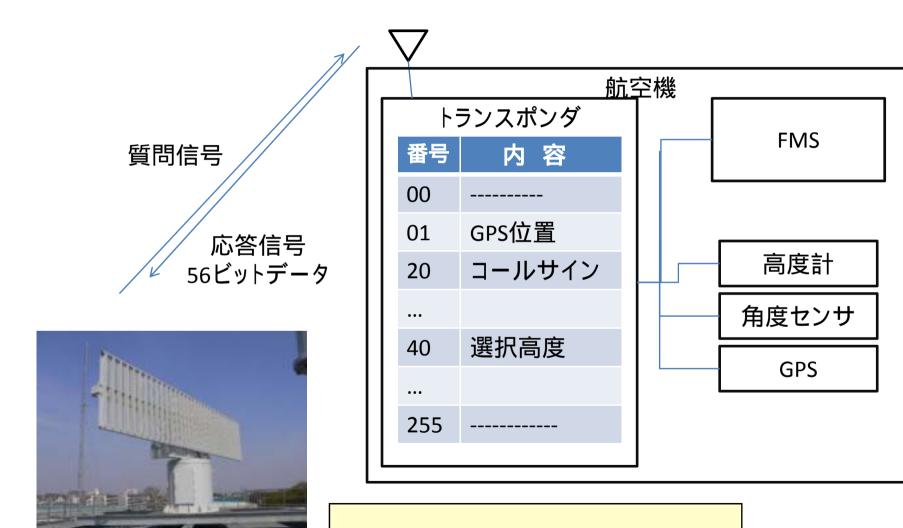
➤欧州

- ✓ 基本監視(ELS)対応トランスポンダの搭載義務化
- ✓ 拡張監視(EHS)対応トランスポンダの搭載義務化 (イギリス,フランス,ドイツ等の一部地域・国のみ)
- ▶ 日本 拡張監視対応のトランスポンダを搭載する航空機 の増加(新型の旅客機,欧州便)
- **ENRI**
 - → 我が国のおける導入に備え 動態情報取得機能を有するSSRモードSの開発

基本監視&拡張監視

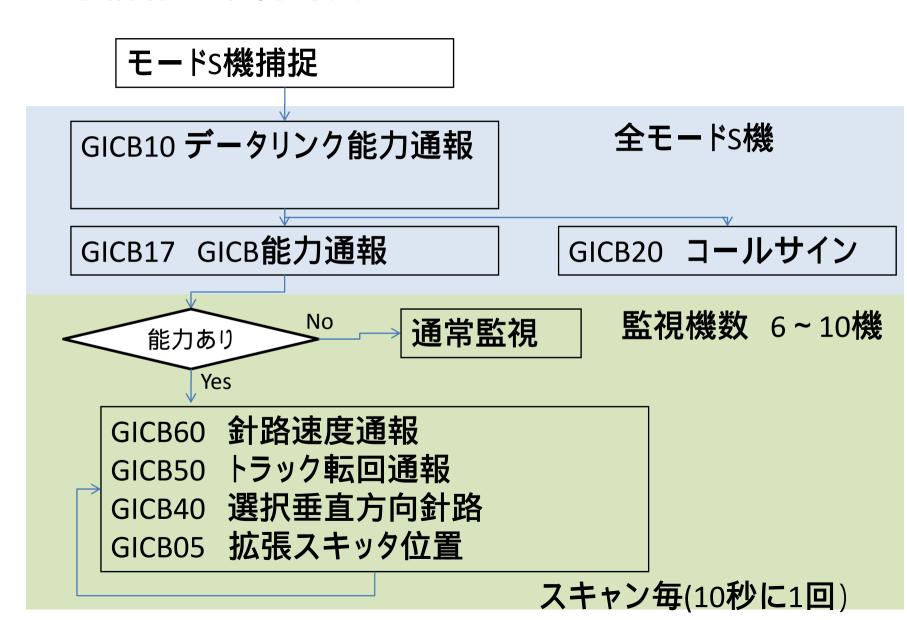
レジ スタ 番号		基本監視	拡張監視
_	24ピットアドレス	*	*
-	Mode 3/A	*	*
-	25 ft高度	*	*
-	フライトステータス	*	*
10	データリンク能力通報	*	*
17	GICB 能力通報	*	*
20	コールサイン	*	*
30	RA	*	*
40	選択垂直方向針路		*
50	トラック転回通報		*
60	針路速度通報		*

基本監視:監視機能の強化拡張監視:動態情報の提供


拡張監視の利点

▶地上において、航空機の状態や意図を 正確かつリアルタイムに把握

Situational Awarenessの向上


- > 航空交通の安全性の向上に寄与
 - ✓ 音声通信負荷の低減
 - ✓ 機上側の操作と地上側の指示の相互確認
 - ✓ 航空機の正確な位置予測
- ▶選択高度情報
 - ✓ 高度に関する航空機の制御目標であり、機上の操作が反映される
 - ✓ 選択高度情報のダウンリンクは,地上側からの 高度指示との確認に利用可能

2. 動態情報の取得技術(プロトコル)

GICBコントローラ

動態情報の取得方法

3.1 データリンク能力モニター

動態情報対応機数(データリンク能力通報GICB10)

割当データ	対応 機数	日本機 (560機)	割合(%) 対応機数/ 観測機数
拡張監視能力(EHS)	1581	204	73.8
基本監視機能(ELS) コールサイン対応	1774	269	82.8
拡張スキッタ能力(ES)	1404	173	65.5
基本監視機能(ELS) SIコード対応	1693	243	79.0

(2143機観測,調布,2009年3月)

動態情報対応機数(GICB能力通報GICB17)

番号	割当データ	対応 機数	日本機 (560機)	割合(%) 対応機数/ 観測機数
05	拡張スキッタ・位置(airborne)	1398	175	65.2
06	拡張スキッタ・位置(空港面)	1383	174	64.6
07	拡張スキッタ・ステータス	1451	186	67.7
08	拡張スキッタ・ID	1469	176	68.6
09	拡張スキッタ速度	1439	186	67.2
0A	拡張スキッタ・イベント情報	62	0	2.9
20	コールサイン	1508	194	70.4
21	航空機登録番号	461	87	21.5
40	選択垂直方向針路	1469	194	68.6
41	次ウェイポイント識別	7	0	0.3
42	次ウェイポイント位置	7	0	0.3
43	次ウェイポイント情報	7	0	0.3

(2143機観測,調布,2009年3月)

動態情報対応機数(GICB能力通報GICB17)

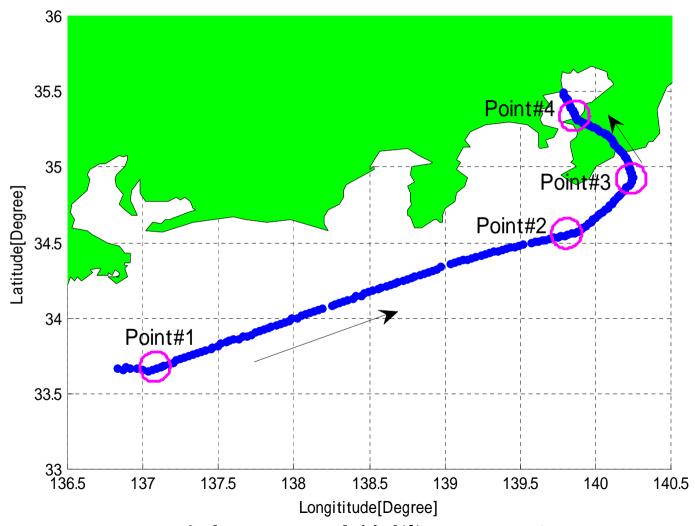
番号	割当データ	対応 機数	日本機 (560機)	割合(%) 対応機数/ 観測機数
44	気象情報·定期情報	34	1	1.59
45	気象情報・ハザード情報	34	1	1.59
48	VHF channel report	0	0	0
50	トラック転回通報	1513	193	70.6
51	概略位置	397	3	18.5
52	精密位置	390	3	18.2
53	Air-reference state vector	36	1	1.68
5F	Quansi-static パラメータ	601	143	28.1
60	針路速度通報	1485	187	69.3

(2143機観測,調布,2009年3月)

データリンク能力モニターの結果

• 基本監視 (ELS)対応率 70-80%

→ コールサイン(GICB20) DF10とDF17に差

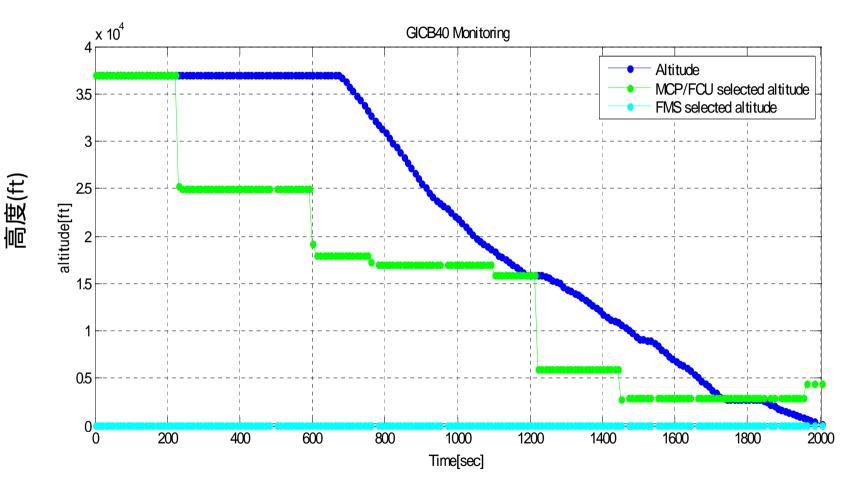

• 拡張監視 (EHS)対応率 約70%

拡張スキッタ対応率 約65%

(注、日本機の対応率は30%程度. 日本機によるフライト数が多いため レーダ画面上における割合は40-50%程度?)

3.2 動態情報のモニター

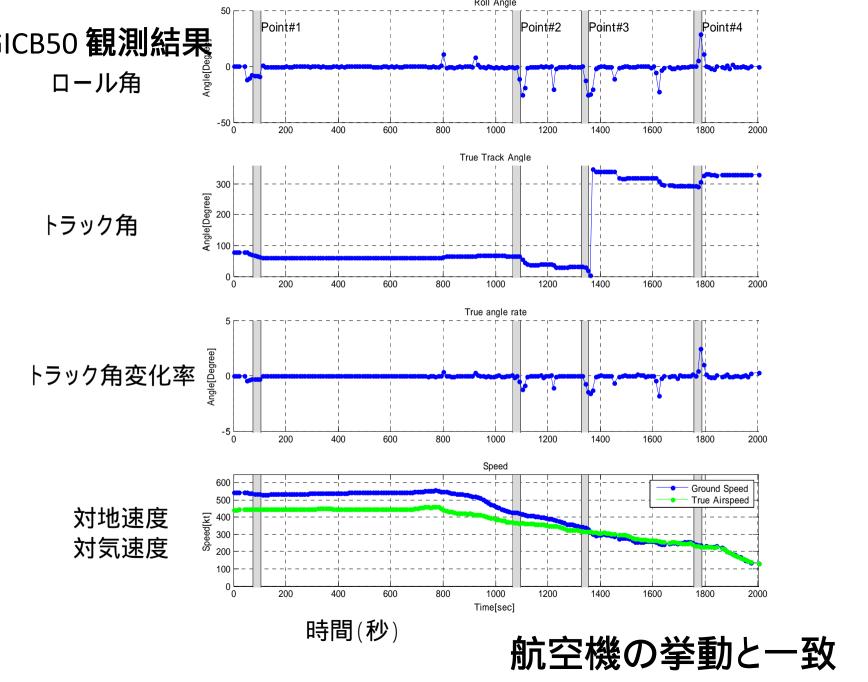
航空機からの動態情報の連続取得



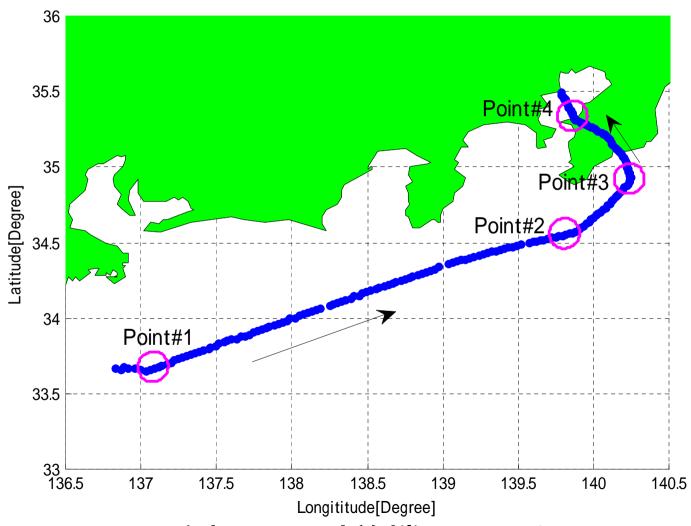
(例)羽田到着機のモニタ

GICB40 航空機垂直方向針路(Aircraft Intention)

- MCP/FCU選択高度 (Range: 0 to 65520 ft)
- FMS選択高度 (Range: 0 to 65520 ft)
- 設定気圧[800-1210mb]
- 上記データの有効無効ステータス
- MCP/FCUモードビット
 - VNAV Mode, ALT Hold Mode or Approach Mode


GICB40 観測結果(着陸機)

時間(秒)


GICB50 トラック転回通報(Track and trun report)

- ロール角(-90 ~ +90 degrees)
- トラック角 (-180 ~ +180 degrees)
- 対地速度 (0 ~ +2946 kt)
- トラック角変化率(degree/sec) (-16 ~ 16 degrees)
- 対気速度(0 ~ +2946 kt)
- 上記データの有効無効ステータス

3.2 動態情報のモニター

航空機からの動態情報の連続取得

(例)羽田到着機のモニタ

4.まとめ

- ➤ENRI 動態情報機能を有するSSRモードSを開発 在空機のモニターを実施
- ▶データリンク能力モニター

動態情報対応機の増加

- ✓ 基本監視(ELS)対応 70-80%
- ✓ 拡張監視(EHS)対応 約70%
- ▶ 動態情報のモニター

航空機の挙動と一致した動態情報であることを確認

今後の予定

データリンク性能 の検証

取得確率

チャネルの負荷

効率的な取得手法

在空機モニタによる データ内容の検証

GICB40 選択垂直方向針路

GICB50 トラック転回通報 GICB60 針路速度通報

→ コンフリクト検出

GICB05-0A 拡張スキッタ

GICB44,45 気象データ