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1. Introduction

Before an aircraft takes off, a lot of planning ac-
tivity has already been done: Pilots of IFR flights
(instrumental flight rule) were asked to submit
their flight plan at least 2h prior to departure
(EOBT). A flight plan contains a profile of the
intended flight path which is then transmitted
to the air traffic management center (ATMC) in
Fukuoka and to the air traffic control facilities
along the way of the aircraft. The role of flow
management, which is one part of the ATMC, is to
balance airspace demand with available capacity.
A computer system monitors the airspace in real
time, using flight plan, radar -and meteorological
information. Based on this, air traffic management
officers created safe and efficient traffic flows
by coordinating with aircraft operators or by
adjusting departure times of individual aircraft
[1], [2]. Still prior to take-off, air-traffic control
centers amended individual flight plans to create
safe departure- and en-route conditions. Once
an aircraft is in the air, it is guided by air-traffic
controllers to its destination. In order to avoid
collisions with other aircraft they may instruct
the pilots to deviate the aircraft from their flight
plans. Other reasons for deviations from flight
plans are meteorological conditions, passenger
delays, technical failures etc. This leads to gaps
between the number of aircraft that are planned
and the number that enters flight sectors in reality.
Such gaps translate into safety problems and non-
optimally used capacity. If the occurrence of such
gaps would be known in advance, the performance
of flow planning could be improved and controllers’
workload could possibly be reduced.

Related work include the following: [3] and
[4] identify binomial- and Poisson distributed
counts of aircraft entering flight sectors. Moreover,
[5] analyzed European Airspace data and found
that gaps between the number of planned and
realized entries into sectors occur systematically.
In this paper we use the methodology of [5] to
demonstrate that the same is true for the Japanese
Airspace.

Gaps are differences between the number of
planned and realized entries into a flight sector.
They can be represented by three possible defini-
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Figure 1: Selected sectors (simplified boundaries)

tions

GAPt =





REALt − PLNt absolute
REALt/PLNt relative
f(REALt, PLNt,X) functional

where REALt, t ∈ N is the number of aircraft
that entered a sector in time interval t and PLNt

is the number of aircraft that were supposed to
enter it. Since the number of real entries into a
flight sector is unknown, we consider GAPt as a
random process. All three definitions give insight
in the phenomenon. For example absolute and rel-
ative gaps describe directly how the phenomenon
appears to an observer. The functional definition
models the joint distribution of REAL and PLN .
X is a vector describing the environment in which
the variables are observed, for example the time
of the day. It gives insight into how gaps are
generated by the flow planning component.

In this paper we describe the univariate
distributions PGAPi of all three processes.
These are commonly referred to as marginal
distributions. Unlike conditional distributions
P (Xt | Xt−1, Xt−2, ...), marginal distributions
cannot completely specify a process [6]. Moreover,
since observations x1, x2, ..., xn of a stochastic
process are usually not independent, sampling
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Figure 3: Sample autocorrelation. Top: PLN-
REAL. bottom: PLN/REAL

gives 6 days of data. The daily average number of
flights in both weeks is around 3500. A difference
is in the daily average number of regulated flights:
996 in the summer, and 833 in the winter month.
This is probably due to severe weather conditions
in the August week (storm, rain), leading to
decreased sector capacities.

In what follows, we present results from all 6
days of data. In a detailed report, we show that the
main characteristics are the same in the summer-
and winter data [10].

3. Time Plots

Figure 2 shows the process GAPt =
PLNt − REALt on three different time-scales.
The timescales grow from 5 min (upper panel),
over 15 min (middle) to 30 min (bottom). On the
x-axes, the slot numbers are drawn. The upper
panel has 288 slots (12 per hour), the middle one
96 (4 per hour) and the lower panel has 48 slots (2
per hour of the day). In each panel, 6 grey lines
are superposed, one from each of the available
days. The black line is the average over these
6 days. This representation of the time series
suggests that successive days are independent
observations of a same underlying process. When

one accepts this assumption, standard statistical
inferences (e.g. confidence intervals) can be made
per time slot. In the 15- and 30 minutes slots, one
can observe a certain regularity: strong peaks and
valleys reproduce on a daily basis. For example
at t = 9h (slot 36 and 18), a negative peak of
value -10 can be seen. In the remaining time,
the process fluctuates around an average value
of 0. Indeed, a one-sided t-test agrees that this
mean value is higher than a randomly selected one
from the remaining process. The variance of this
fluctuation looks constant during the day hours
(7-19h).

Of all 21 sectors, strong visible peaks have
been observed in three sectors: F05, T02 and
T26. A more detailed analysis showed that in
F05 and T02, a peak in planned traffic arrives
with delay, causing the observed peak. As
mentioned above, this can also be due to the
inaccuracy in arrival time calculation. F05 has
10 % of inaccurate, and T02 11 % of inaccurate
arrivals. In T26, a valley in planned traffic exists
at t=9h (see [10]). The real traffic is smooth
at this time, leading to the observed gaps. This
might indeed be the effect of adjustment by ATC’s.

Figure 3 shows the sample autocorrelation func-
tion (acf(k)) of the series GAPt = REALt−PLNt

(top) and GAPt = REALt/PLNt (bottom)

acf(k) =
N−k

i=1 (xi − µ̂)(xi+k − µ̂)N
i=1(xi − µ̂)2

, 0 ≤ k ≤ 21

of one day (7-19h) until lag k=21, correspond-
ing to roughly 2 hours. µ̂ = 1

N

N
i=1 xi. The hori-

zontal lines delimit the 95 % confidence interval for
the autocorrelation of a process with independent
and identically distributed variables. No mean-
ingful significant coefficients appear in both plots.
Thus, an analysis of the marginal distributions can
be justified.

4. Marginal Distributions

The marginal distributions of the absolute, relative
and functional processes have been analyzed.

Absolute Figure 4 shows a typical histogram of
the marginal distribution of absolute gaps GAPt =
REALt−PLNt during the day (7-19h). Sector T12
has been selected for this example. It is a symmet-
ric distribution. Its estimated mean and standard
deviation are µ̂ = 0.21 and s = 2.6 respectively.
Superposed is a normal distribution with density

pr(x) =
1

s
√
2π

e−
(x−µ̂)2

2s2
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Figure 2: Time plots on different time-scales. Top: 5min, middle: 15 min, bottom: 30 min time scale.

its marginal distributions can be biased. On the
other hand, marginal distributions summarize the
global variation of a process. Sometimes they also
provide insight in its dependency structure [7],
[8]. When not stated otherwise, we report results
from sampling marginal distributions of a sin-
gle long realization of the stationary process GAPt.

The paper is organized as follows: In the next
section, the data sources are introduced. The fol-
lowing three sections show time-, distribution- and
trend analysis respectively. A comparison with re-
sults from European Airspace can be found in sec-
tion 6. Finally, interpretation and conclusions can
be found in section 7.

2. Data source and selection

We use two data sources: the regulated flight
plan data and the radar track data. These are
trajectory based data formats. We assume a
climb − cruise − descent trajectory with constant
climb - and descent phases and constant speed be-
tween two waypoints. Based on this, we aggregate
the data on a sector level. All data is numerical.
Radar data of the form (latt, lont, altt) is available
in 10 sec intervals. Linear interpolations are made
in order to determine crossing point - and time
with the vertical planes of sector boundaries. We
can expect accurate results in cruise phase. As

far as the flight plan data is concerned, unreliable
altitude information and other error sources lead
to inexact entry time calculations into a flight
sector [9]. An inspection showed that the average
interval between two waypoints in cruise phase is
about 6 min. Assuming that the true entry time
into a sector takes place in the second half of the
time between the last waypoint and the waypoint
inside a sector, we can expect an average of 1.5
min entry time error per flight. These inaccuracies
lead to time-distorted counts of the number of
entries with respect to the true entry times.

For this study, we selected sectors where the
crossing with the sector boundary of more than 85
% of entering aircraft could be determined. The
selected sectors are 19 in total. In order to cover
laterally the Japanese Airspace we added two more
sectors (T27 and S03 with 81 % and 82 % of entry
time accuracy respectively). The sectors belong to
3 control centers. 11 of them are from the Tokyo
center, 4 from the Sapporo center, and 6 from
the Fukuoka center. These sectors are generally
en-route sectors. The sectors are shown in Figure
1. The numbers are the percentages of entering
flights with inexact entry time calculations.

Flight plan and radar data is available for 2
working weeks in 2006 (we use Tuesday-Thursday
as working week). The first week is August 22-24.
The second week is November 14-16. In total, this
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Figure 3: Sample autocorrelation. Top: PLN-
REAL. bottom: PLN/REAL

gives 6 days of data. The daily average number of
flights in both weeks is around 3500. A difference
is in the daily average number of regulated flights:
996 in the summer, and 833 in the winter month.
This is probably due to severe weather conditions
in the August week (storm, rain), leading to
decreased sector capacities.

In what follows, we present results from all 6
days of data. In a detailed report, we show that the
main characteristics are the same in the summer-
and winter data [10].

3. Time Plots

Figure 2 shows the process GAPt =
PLNt − REALt on three different time-scales.
The timescales grow from 5 min (upper panel),
over 15 min (middle) to 30 min (bottom). On the
x-axes, the slot numbers are drawn. The upper
panel has 288 slots (12 per hour), the middle one
96 (4 per hour) and the lower panel has 48 slots (2
per hour of the day). In each panel, 6 grey lines
are superposed, one from each of the available
days. The black line is the average over these
6 days. This representation of the time series
suggests that successive days are independent
observations of a same underlying process. When

one accepts this assumption, standard statistical
inferences (e.g. confidence intervals) can be made
per time slot. In the 15- and 30 minutes slots, one
can observe a certain regularity: strong peaks and
valleys reproduce on a daily basis. For example
at t = 9h (slot 36 and 18), a negative peak of
value -10 can be seen. In the remaining time,
the process fluctuates around an average value
of 0. Indeed, a one-sided t-test agrees that this
mean value is higher than a randomly selected one
from the remaining process. The variance of this
fluctuation looks constant during the day hours
(7-19h).

Of all 21 sectors, strong visible peaks have
been observed in three sectors: F05, T02 and
T26. A more detailed analysis showed that in
F05 and T02, a peak in planned traffic arrives
with delay, causing the observed peak. As
mentioned above, this can also be due to the
inaccuracy in arrival time calculation. F05 has
10 % of inaccurate, and T02 11 % of inaccurate
arrivals. In T26, a valley in planned traffic exists
at t=9h (see [10]). The real traffic is smooth
at this time, leading to the observed gaps. This
might indeed be the effect of adjustment by ATC’s.

Figure 3 shows the sample autocorrelation func-
tion (acf(k)) of the series GAPt = REALt−PLNt
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the autocorrelation of a process with independent
and identically distributed variables. No mean-
ingful significant coefficients appear in both plots.
Thus, an analysis of the marginal distributions can
be justified.

4. Marginal Distributions

The marginal distributions of the absolute, relative
and functional processes have been analyzed.

Absolute Figure 4 shows a typical histogram of
the marginal distribution of absolute gaps GAPt =
REALt−PLNt during the day (7-19h). Sector T12
has been selected for this example. It is a symmet-
ric distribution. Its estimated mean and standard
deviation are µ̂ = 0.21 and s = 2.6 respectively.
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Figure 2: Time plots on different time-scales. Top: 5min, middle: 15 min, bottom: 30 min time scale.

its marginal distributions can be biased. On the
other hand, marginal distributions summarize the
global variation of a process. Sometimes they also
provide insight in its dependency structure [7],
[8]. When not stated otherwise, we report results
from sampling marginal distributions of a sin-
gle long realization of the stationary process GAPt.

The paper is organized as follows: In the next
section, the data sources are introduced. The fol-
lowing three sections show time-, distribution- and
trend analysis respectively. A comparison with re-
sults from European Airspace can be found in sec-
tion 6. Finally, interpretation and conclusions can
be found in section 7.

2. Data source and selection

We use two data sources: the regulated flight
plan data and the radar track data. These are
trajectory based data formats. We assume a
climb − cruise − descent trajectory with constant
climb - and descent phases and constant speed be-
tween two waypoints. Based on this, we aggregate
the data on a sector level. All data is numerical.
Radar data of the form (latt, lont, altt) is available
in 10 sec intervals. Linear interpolations are made
in order to determine crossing point - and time
with the vertical planes of sector boundaries. We
can expect accurate results in cruise phase. As

far as the flight plan data is concerned, unreliable
altitude information and other error sources lead
to inexact entry time calculations into a flight
sector [9]. An inspection showed that the average
interval between two waypoints in cruise phase is
about 6 min. Assuming that the true entry time
into a sector takes place in the second half of the
time between the last waypoint and the waypoint
inside a sector, we can expect an average of 1.5
min entry time error per flight. These inaccuracies
lead to time-distorted counts of the number of
entries with respect to the true entry times.

For this study, we selected sectors where the
crossing with the sector boundary of more than 85
% of entering aircraft could be determined. The
selected sectors are 19 in total. In order to cover
laterally the Japanese Airspace we added two more
sectors (T27 and S03 with 81 % and 82 % of entry
time accuracy respectively). The sectors belong to
3 control centers. 11 of them are from the Tokyo
center, 4 from the Sapporo center, and 6 from
the Fukuoka center. These sectors are generally
en-route sectors. The sectors are shown in Figure
1. The numbers are the percentages of entering
flights with inexact entry time calculations.

Flight plan and radar data is available for 2
working weeks in 2006 (we use Tuesday-Thursday
as working week). The first week is August 22-24.
The second week is November 14-16. In total, this
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Sector N µ̂ s skew kurt min max
T22 870 -0.1 0.8 0.0 3.8 -2.8 2.6
F07 870 -0.2 0.9 -0.1 3.1 -2.7 2.6
T26 870 0.3 0.8 0.1 3.9 -2.4 3.0
T02 870 0.0 1.0 0.0 3.1 -2.9 2.7
T24 870 0.2 0.8 0.2 3.8 -2.8 2.8
all [-0.2, 0.3] [0.7, 1.0] [-0.1, 0.3] [2.4, 3.9] [-2.9, -1.9] [2.2, 3.0]

Table 2: Marginal distribution of relative gaps GAPt = log(REALt/PLNt) (7-19h) on 5 randomly selected
sectors. Last row: all 21 sectors.
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Figure 6: Histograms of relative gaps GAPt =
REALt/PLNt (top) and of their logarithm (bot-
tom).
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Figure 7: Quantile plots for relative gaps of 21 sec-
tors (7-19h).

fits the data reasonably. Table 2 shows descriptive
statistics for this representation of relative gaps.
No obvious exceptions from Gaussian distributions
can be seen. In all 21 sectors, skewness lies in the
interval [-0.1, 0.3] and kurtosis in [2.4, 3.9] (last
row). The q-q plot for all 21 sectors can be seen in
Figure 7. No strong deviations from Gaussian dis-
tributions can be observed, although the tails show
slightly higher probabilities than Gaussian distri-
butions.

Functional Figure 8 shows the histogram of the
variable REALt of the sector T01, conditioned
on the planned traffic PLNt: P (REALt|PLNt).
In the example PLNt = 2, which is the average
traffic density for this sector. The distribution is
right skewed. The variable is positive (including
0) and discrete. Superposed are Poisson (green,
dotted) and binomial distributions (red). Both
distributions are accepted by a χ2 goodness-of-fit
test (on a 5 % level)

Sector N µ̂ s skew kurt min max
F03 870 0.2 2.3 0.0 3.3 -7 9
S02 870 -0.1 1.8 -0.2 3.3 -6 5
T11 870 -0.1 0.8 0.0 5.6 -3 4
T02 870 0.0 2.1 -0.2 3.8 -9 7
F21 870 -0.0 1.7 -0.1 3.2 -5 6
all [-0.5, 1.1] [0.8, 2.7] [-0.4, 0.2] [3.0, 5.6] [-9, -3] [4, 10]

Table 1: Marginal distribution of absolute gaps GAPt = REALt − PLNt (7-19h). 5 randomly selected
sectors. Last row: all 21 sectors.
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Figure 4: Histogram of absolute gaps GAPt =
REALt − PLNt (7-19h).

Except from peaks at GAPt ∈ {−1, 0, 1} the dis-
tribution fits the data accurately. Table 1 shows
descriptive statistics for five randomly selected sec-
tors. They all have higher moments close to a
Gaussian distribution: skewness (measure of sym-
metry) ∼ 0 and kurtosis (measure of ‘peaked-
ness’) ∼ 3. However, note that the distribution
looks slightly spikier than a Gaussian distribution.
System-wide, the means of all 21 sectors lie in the
range [-0.5, 1.1]. Their standard deviations lie in
[0.8, 2.7], skewness in [-0.4, 0.2] and kurtosis in [3.0,
5.6] (last row). For an interpretation of the stan-
dard deviations please see section 6. According to
the interquartile ranges, two outliers in the kurto-
sis could be identified. These were T11 (kurt=5.5)
and T19 (kurt=4.4). Both indicate that the distri-
butions are narrower than a Gaussian distribution.
Visual inspection of these two distributions showed
no other anomalies. Figure 5 plots the quantiles of
the data against the quantiles of a Gaussian distri-
bution (q-q plot). If the data were normally dis-
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Figure 5: Quantile plots for absolute gaps of 21
sectors (7-19h).

tributed, this plot would result in a straight line.
The distributions of all 21 sectors are superposed.
The data has been standardized, so the diagonal
is the 45-degree line. The plot indicates no clear
evidence against Gaussian distribution models.

Relative The upper part of Figure 6 shows the
histogram of the marginal distribution of GAPt =
REALt/PLNt during the day (7-19h). It is anti-
symmetric to the right with µ̂ = 1.4, s = 1.2 and
skewness skew = 2.3. Outliers with a larger value
than four times the standard deviation have been
removed. Superposed is a log-normal distribution
with density

pr(x) =
1

sx
√
2π

e−
(ln x−µ̂)2

2s2

The lower part shows their logarithm GAPt =
log(REALt/PLNt). It still looks slightly antisym-
metric to the right. It has mean µ̂ = 0.1, stan-
dard deviation s = 0.9 and skewness skew = 0.2.
However, a Gaussian distribution is superposed. It

02_009_016_Gwiggner.indd   12 08.5.27   3:19:19 PM



電子航法研究所研究発表会（第 8回 平成 20 年 6 月）

13―    ―

Sector N µ̂ s skew kurt min max
T22 870 -0.1 0.8 0.0 3.8 -2.8 2.6
F07 870 -0.2 0.9 -0.1 3.1 -2.7 2.6
T26 870 0.3 0.8 0.1 3.9 -2.4 3.0
T02 870 0.0 1.0 0.0 3.1 -2.9 2.7
T24 870 0.2 0.8 0.2 3.8 -2.8 2.8
all [-0.2, 0.3] [0.7, 1.0] [-0.1, 0.3] [2.4, 3.9] [-2.9, -1.9] [2.2, 3.0]

Table 2: Marginal distribution of relative gaps GAPt = log(REALt/PLNt) (7-19h) on 5 randomly selected
sectors. Last row: all 21 sectors.

T12 GAP_t=REAL/PLN

t: ( 7 − 19 h) mu: 1.4 sd: 1.2 sk: 2.3 n: 846
REAL_t/PLN_t

D
en

si
ty

0 1 2 3 4 5 6 7

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

T12 GAP_t=log(REAL/PLN)

t: ( 7 − 19 h) mu: 0.11 sd: 0.85 sk: 0.21 n: 870
log(REAL_t/PLN_t)

D
en

si
ty

−4 −2 0 2 4

0.
0

0.
1

0.
2

0.
3

0.
4

Figure 6: Histograms of relative gaps GAPt =
REALt/PLNt (top) and of their logarithm (bot-
tom).

−3 −2 −1 0 1 2 3

−3
−2

−1
0

1
2

3

normal q−q plot rel

( 7 − 19 h)
theor. quantiles

sa
m

pl
e 

qu
an

til
es

Figure 7: Quantile plots for relative gaps of 21 sec-
tors (7-19h).

fits the data reasonably. Table 2 shows descriptive
statistics for this representation of relative gaps.
No obvious exceptions from Gaussian distributions
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tributions can be observed, although the tails show
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In the example PLNt = 2, which is the average
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right skewed. The variable is positive (including
0) and discrete. Superposed are Poisson (green,
dotted) and binomial distributions (red). Both
distributions are accepted by a χ2 goodness-of-fit
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Table 1: Marginal distribution of absolute gaps GAPt = REALt − PLNt (7-19h). 5 randomly selected
sectors. Last row: all 21 sectors.
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Figure 4: Histogram of absolute gaps GAPt =
REALt − PLNt (7-19h).

Except from peaks at GAPt ∈ {−1, 0, 1} the dis-
tribution fits the data accurately. Table 1 shows
descriptive statistics for five randomly selected sec-
tors. They all have higher moments close to a
Gaussian distribution: skewness (measure of sym-
metry) ∼ 0 and kurtosis (measure of ‘peaked-
ness’) ∼ 3. However, note that the distribution
looks slightly spikier than a Gaussian distribution.
System-wide, the means of all 21 sectors lie in the
range [-0.5, 1.1]. Their standard deviations lie in
[0.8, 2.7], skewness in [-0.4, 0.2] and kurtosis in [3.0,
5.6] (last row). For an interpretation of the stan-
dard deviations please see section 6. According to
the interquartile ranges, two outliers in the kurto-
sis could be identified. These were T11 (kurt=5.5)
and T19 (kurt=4.4). Both indicate that the distri-
butions are narrower than a Gaussian distribution.
Visual inspection of these two distributions showed
no other anomalies. Figure 5 plots the quantiles of
the data against the quantiles of a Gaussian distri-
bution (q-q plot). If the data were normally dis-
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Figure 5: Quantile plots for absolute gaps of 21
sectors (7-19h).

tributed, this plot would result in a straight line.
The distributions of all 21 sectors are superposed.
The data has been standardized, so the diagonal
is the 45-degree line. The plot indicates no clear
evidence against Gaussian distribution models.

Relative The upper part of Figure 6 shows the
histogram of the marginal distribution of GAPt =
REALt/PLNt during the day (7-19h). It is anti-
symmetric to the right with µ̂ = 1.4, s = 1.2 and
skewness skew = 2.3. Outliers with a larger value
than four times the standard deviation have been
removed. Superposed is a log-normal distribution
with density

pr(x) =
1

sx
√
2π

e−
(ln x−µ̂)2

2s2

The lower part shows their logarithm GAPt =
log(REALt/PLNt). It still looks slightly antisym-
metric to the right. It has mean µ̂ = 0.1, stan-
dard deviation s = 0.9 and skewness skew = 0.2.
However, a Gaussian distribution is superposed. It
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Figure 10: Candidate trend functions. x-axis:
number of planned arrivals, y axis: average number
of real arrivals.
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Table 4: Comparison of European and Japanese
Airspace

6. Comparison with European
Airspace

A similar analysis has been conducted with data
from Central European Airspace [5]. The main
characteristics — shape of processes, marginal dis-
tributions and trends — are the same in both
airspaces. There are only minor differences, which
are summarized in Table 4.
The variation of the gaps (s = standard devi-

ation) in Europe lies in the interval [1.4, 2.3] and
in Japan in [0.8, 2.7]. Before comparing directly,
one can argue that this variation depends on the
traffic densities. An analysis showed that the vari-
ation grows with the average traffic densities, as
expected. A normalization by the logarithm of the
average traffic density leads to near-constant vari-
ability for the Japanese- and the European sectors.
Details of this effect are currently under investi-
gation. The next two rows concern the marginal
distributions. Another study showed that in Euro-
pean Airspace, the tail probabilities of normal and
log-normal distributions are lower and than the em-
pirical probabilities [5]. This might be the effect of

non-heterogeneous behavior, for example different
take-off strategies of pilots. According to our study,
this tail pattern cannot be seen in the Japanese
Airspace data.

7. Interpretation

Uncertainty We analyzed three definitions of
gaps between the number of planned and realized
entries in a sector. We observed that the patterns
of planned and realized traffic are similar and that
they repeat on a daily basis. Moreover, absolute
PLNt − REALt and relative PLNt/REALt

gaps fluctuate around 0 and 1 and have constant
variance during the day and during the night.
This suggests that the phenomenon of gaps is
time-invariant (stationary during the day (7-
19h)). In particular, no peak hours of gaps exist.
We then analyzed the marginal distributions of
the three definitions of gaps during the day (7-19h).

a. REALt − PLNt (absolute definition)
Absolute gaps are symmetrically distributed with
µ ∼ 0 and sd ∼ 2. This means that roughly
the same number of aircraft than planned arrives
at sector entries. It also means that in 96 %
of the cases, ±4 of the planned aircraft arrive.
Except two outliers in the kurtosis, no strong
disagreement with Gaussian distributions in the
core and the tail could be identified. Gaussian
distributions can be expected when uncertainty
factors are independent from each other.

b. REALt/PLNt (relative definition)
Relative gaps are distributed asymmetrically
around µ ∼ 1. One reason is that the variable is
positive by definition and that the mean is close
to 0, so it is ‘cut-off’ on the negative values. The
distributions of their logarithms show no strong
disagreement with Gaussian distributions, al-
though their tail probabilities are slightly too high
and their logarithms seem slightly right-skewed.
As a consequence, log-normal distributions are
candidates to describe relative gaps. Log-normal
distributions occur when the uncertainty factors
are independent but with multiplicative effect.

c. REALt = f(PLNt, t) (functional definition)
Gaps as a function of planned traffic are distributed
asymmetrically. Poisson distributions accurately
characterize this representation of gaps. This gives
an idea of the variation of the number of arrivals
in a sector because mean and variance are the
same for a Poisson distribution. The Poisson dis-
tribution can be derived analytically from count-
ing the number of events in larger time intervals
when the probability of occurrence of events are

0 2 4 6 8

0.
00

0.
05

0.
10

0.
15

0.
20

0.
25

0.
30

T01:Pr(REAL | PLN=2)

p:0.96, N:214
REAL

fre
q

Pois
bin

Figure 8: Number of real entries (REALt) condi-
tioned on on number of planned entries (PLNt =
2).

Distribution Cond. χ2

Poisson PLN 70 %
Binomial PLN 26 %
Poisson PLN ≤ 2 80 %
Poisson PLN > 2 55 %

Table 3: Goodness-of-fit of Poisson and Binomial
distributions.

A system-wide comparison is summarized in ta-
ble 3. We selected randomly 100 sectors and con-
ditions and evaluated the goodness-of-fit of a Pois-
son and of a binomial distribution with a χ2 test.
Globally, 70 % of the distributions can be seen as
Poisson and 26 % as binomial. When planned traf-
fic PLN ≤ 2, Poisson distributions are accepted in
80 % of the cases.

5. Trends

Figure 9 shows the scatterplot of PLNt against
REALt on a 5 min timescale. The range of both
variables is around [0,8]. Since there are N = 870
points in the sample, we visualize the distribution
of the cloud by the background color (light: few
values, dim: many values). One can see a single
peak around (1,2) and that the cloud is distributed
symmetrically around this peak. Negative values
seem to be ‘cut-off’.
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Figure 9: Relationship between number of planned
arrivals PLN (x-axis) and average number of real
arrivals REAL (y axis). Distribution and sample
means (bold line).

The sample conditional mean is

µ̂(REALt|PLNt = k) =
1
nk



PLNi=k

reali

where nk is the number of observations with
PLNt = k. As a function of k, it has a logarithm-
like shape (bold line). In particular at PLNt = 0,
the mean is > 0.

Three simple descriptions of this relationship
are f(x) ∈ {log(x),√x, 1− 1/x}. A common tech-
nique to analyze count-variables is to model the
logarithm of their mean [11]. This transformation
assures non-negative mean values, which is a con-
straint for certain probability distributions (but it
affects the interpretation of parameters). Since the
variable REALt is a count, we assume

log(µ(REALt | PLNt) = αf(PLNt) + β

with α, β, µ(REALt | PLNt) > 0 ∈ R. We fit
the above models by maximum likelihood, assum-
ing that P (REALt | PLNt) follows a Poisson dis-
tribution with mean eµ(REALt | PLNt). Note that
the model using the logarithmic trend can also be
written as the power of α. The predicted mean val-
ues of the three models are superposed in Figure 10.
They all describe evenly well the main shape of the
sample means.
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Figure 10: Candidate trend functions. x-axis:
number of planned arrivals, y axis: average number
of real arrivals.
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Table 4: Comparison of European and Japanese
Airspace

6. Comparison with European
Airspace

A similar analysis has been conducted with data
from Central European Airspace [5]. The main
characteristics — shape of processes, marginal dis-
tributions and trends — are the same in both
airspaces. There are only minor differences, which
are summarized in Table 4.
The variation of the gaps (s = standard devi-

ation) in Europe lies in the interval [1.4, 2.3] and
in Japan in [0.8, 2.7]. Before comparing directly,
one can argue that this variation depends on the
traffic densities. An analysis showed that the vari-
ation grows with the average traffic densities, as
expected. A normalization by the logarithm of the
average traffic density leads to near-constant vari-
ability for the Japanese- and the European sectors.
Details of this effect are currently under investi-
gation. The next two rows concern the marginal
distributions. Another study showed that in Euro-
pean Airspace, the tail probabilities of normal and
log-normal distributions are lower and than the em-
pirical probabilities [5]. This might be the effect of

non-heterogeneous behavior, for example different
take-off strategies of pilots. According to our study,
this tail pattern cannot be seen in the Japanese
Airspace data.

7. Interpretation

Uncertainty We analyzed three definitions of
gaps between the number of planned and realized
entries in a sector. We observed that the patterns
of planned and realized traffic are similar and that
they repeat on a daily basis. Moreover, absolute
PLNt − REALt and relative PLNt/REALt

gaps fluctuate around 0 and 1 and have constant
variance during the day and during the night.
This suggests that the phenomenon of gaps is
time-invariant (stationary during the day (7-
19h)). In particular, no peak hours of gaps exist.
We then analyzed the marginal distributions of
the three definitions of gaps during the day (7-19h).

a. REALt − PLNt (absolute definition)
Absolute gaps are symmetrically distributed with
µ ∼ 0 and sd ∼ 2. This means that roughly
the same number of aircraft than planned arrives
at sector entries. It also means that in 96 %
of the cases, ±4 of the planned aircraft arrive.
Except two outliers in the kurtosis, no strong
disagreement with Gaussian distributions in the
core and the tail could be identified. Gaussian
distributions can be expected when uncertainty
factors are independent from each other.

b. REALt/PLNt (relative definition)
Relative gaps are distributed asymmetrically
around µ ∼ 1. One reason is that the variable is
positive by definition and that the mean is close
to 0, so it is ‘cut-off’ on the negative values. The
distributions of their logarithms show no strong
disagreement with Gaussian distributions, al-
though their tail probabilities are slightly too high
and their logarithms seem slightly right-skewed.
As a consequence, log-normal distributions are
candidates to describe relative gaps. Log-normal
distributions occur when the uncertainty factors
are independent but with multiplicative effect.

c. REALt = f(PLNt, t) (functional definition)
Gaps as a function of planned traffic are distributed
asymmetrically. Poisson distributions accurately
characterize this representation of gaps. This gives
an idea of the variation of the number of arrivals
in a sector because mean and variance are the
same for a Poisson distribution. The Poisson dis-
tribution can be derived analytically from count-
ing the number of events in larger time intervals
when the probability of occurrence of events are
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tioned on on number of planned entries (PLNt =
2).

Distribution Cond. χ2

Poisson PLN 70 %
Binomial PLN 26 %
Poisson PLN ≤ 2 80 %
Poisson PLN > 2 55 %

Table 3: Goodness-of-fit of Poisson and Binomial
distributions.

A system-wide comparison is summarized in ta-
ble 3. We selected randomly 100 sectors and con-
ditions and evaluated the goodness-of-fit of a Pois-
son and of a binomial distribution with a χ2 test.
Globally, 70 % of the distributions can be seen as
Poisson and 26 % as binomial. When planned traf-
fic PLN ≤ 2, Poisson distributions are accepted in
80 % of the cases.

5. Trends

Figure 9 shows the scatterplot of PLNt against
REALt on a 5 min timescale. The range of both
variables is around [0,8]. Since there are N = 870
points in the sample, we visualize the distribution
of the cloud by the background color (light: few
values, dim: many values). One can see a single
peak around (1,2) and that the cloud is distributed
symmetrically around this peak. Negative values
seem to be ‘cut-off’.
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arrivals PLN (x-axis) and average number of real
arrivals REAL (y axis). Distribution and sample
means (bold line).

The sample conditional mean is

µ̂(REALt|PLNt = k) =
1
nk
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where nk is the number of observations with
PLNt = k. As a function of k, it has a logarithm-
like shape (bold line). In particular at PLNt = 0,
the mean is > 0.

Three simple descriptions of this relationship
are f(x) ∈ {log(x),√x, 1− 1/x}. A common tech-
nique to analyze count-variables is to model the
logarithm of their mean [11]. This transformation
assures non-negative mean values, which is a con-
straint for certain probability distributions (but it
affects the interpretation of parameters). Since the
variable REALt is a count, we assume

log(µ(REALt | PLNt) = αf(PLNt) + β

with α, β, µ(REALt | PLNt) > 0 ∈ R. We fit
the above models by maximum likelihood, assum-
ing that P (REALt | PLNt) follows a Poisson dis-
tribution with mean eµ(REALt | PLNt). Note that
the model using the logarithmic trend can also be
written as the power of α. The predicted mean val-
ues of the three models are superposed in Figure 10.
They all describe evenly well the main shape of the
sample means.
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constant and independent over time, characteriz-
ing ‘total randomness’. Moreover, Poisson distri-
butions are the limiting distributions when several
Point processes are superposed [12]. But one can-
not deduce from an observed Poisson distribution
that the probability of events is constant and in-
dependent [13]. Moreover distributions with sim-
ilar shape exist (e.g. negative binomial distribu-
tion), and separation constraints contradict with
exponentially distributed inter-arrival times. To
conclude, it is not enough information to unam-
biguously draw conclusions about the underlying
mechanism of the phenomenon [13].

Trends We observed that the average of real
arrivals decreases with large number of planned
arrivals. More specifically, systematic under-
deliveries have to be expected during high traffic
densities. This is counter-intuitive since one ex-
pects that different uncertainty factors cancel out
in average. The phenomenon can be partly at-
tributed to random disturbances of the flight sched-
ules [14]. This information is useful for flow plan-
ning: avoid sequences of high planned densities to
allow for compensation of uncertainties.

Similarities with European Airspace We
have seen that the main characteristics — shape
of processes, marginal distributions and trends —
are the same in both airspaces. This is expected
since the physical constraints of both systems are
similar.

8. Conclusion

We analyzed data from the Japanese Airspace on
a sector level. We compared the number of aircraft
that were planned to enter sectors (flight plan data)
with the number that entered them in reality (radar
data). We also compared our findings with re-
sults from European Airspace. Our hypothesis was
that due to operational uncertainties (e.g. delays,
technical failures, etc.), there are systematic gaps
between these two numbers. From our analysis
we conclude that in both, European and Japanese
Airspace, (i) gaps between the number of planned
and realized traffic occur systematically, (ii) under-
delivery increases with higher traffic densities and
(iii) the size of the gaps can be described with Pois-
son distributions. This is counter-intuitive since
one expects that different uncertainty factors can-
cel out in average. Such information is useful for
flow planning: avoid sequences of high planned
densities to allow for compensation of uncertain-
ties. These findings are empirical. We found an
accurate description of the data and its variation.
A part of this phenomenon can be attributed to
complete random disturbances of flight schedules.

In the future, an analysis of the underlying mecha-
nisms is needed to derive strategies to improve the
performance of flow management.
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