ミリ波対応電波無響室の特性

電子航法開発部 米本成人 小瀬木滋 山本憲夫 山田公男* *元電子航法開発部

1. はじめに

昭和 45 年から 50 年にかけて、着陸誘 導装置等の電子航法機器のような様々な 無線設備を開発・評価する目的で、当研 究所に大型電波無響室が整備された[1]。 近年、その老朽化が著しかったことや、 情報化時代を迎え、より高い周波数の利 用が進んでいることから、平成 12 年度補 正予算と平成 13 年度施設整備費補助金に より電波無響室高度化整備工事が行われ、 平成 14 年 3 月に竣工した。

本稿では、まず電波無響室の概要につ いて説明する。次に電波吸収体の透過特 性および反射特性について 10 GHz で測定 した結果を述べる。また、鋭い指向性を 有する 94 GHz ミリ波レーダを用いた電 波無響室内壁面での電波反射特性の測定 法と、壁面反射の大きい箇所の特定法に ついて考察する。最後に、電波無響室を 利用した測定事例を紹介する。

2. 無響室の概要

図 1 に当研究所の電波無響室(以下、 無響室)内部、図 2 に無響室の平面図を 示す。

図1 電波無響室内部

図 2 電波無響室平面図

仕様項目	旧電波無響室	新電波無響室
電波無響室		
使 用 可 能 周 波 数	0.1 ~ 20GHz	0.5 ~ 100GHz
遮蔽減衰量	> 60dB	> 80dB
反射減衰量	> 20dB	> 30dB (>50dB@94GHz)
シールド 内法寸法	約 35m×10m ×7m	約 34m×9m×7m
床面加重	$> 300 kg/m^2$	$> 300 kg/m^2$
空中線特性試験装置		
使 用 可 能 周 波 数 範 囲	~ 18GHz	~ 100GHz (拡張可能)
電 力 測 定 精 度	0.1dB	< 0.001dB
位相測定	記録困難	可能
方位分解能	0.01 度	0.01 度
自動測定	不可	可能
データ記録	ペンプロッタ	電子媒体
その他		大型自動ドア 回転台移動機構 計測器収容機能 信号分析機能 アンテナインピーダ ンス測定機能

表1 新旧電波無響室、空中線 特性試験装置の仕様

表1には新旧無響室の仕様を示す。無 響室は、屋外の電波の影響を遮断するた めに厚さ 6.3 mm、内法寸法 34.45 m×8.8 m ×6.52 m の鉄板でシールドされている。 無響室と図 2 右側の実験準備室とは大型 のスライド式自動開閉シールドドアで仕 切られている。また、無響室と図 2 左下 の第三実験室と図 2 右下の計測室とは手 動式のシールドドアで仕切られている。 計測室も鉄板によりシールドされており、 図 2 下の第 4 実験室とは手動式のシール ドドアで仕切られている。無響室におけ る電波遮蔽減衰量は 80 dB 以上である。4 つの壁面と天井の各シールドの内側には 合板で内壁を作り、20 cm×20 cm×50 cm の正四角錐状の突起を9つ有する 60 cm × 60 cm × 60 cm の発泡ポリウレタン電波吸 収体を接着している。大規模なスケール モデル実験等の機材設置に耐えうるため、 床面は 60 cm×60 cm×45 cmの電波吸収 体を誘電体の箱に封入した箱型の電波吸 収体を使用し、平面かつ耐加重 300 kg/m² を実現する高耐荷重の床面とした。これ

らによって、使用周波数 500 MHz から 100 GHz で反射減衰量が 30 dB 以上であり、 有効容積は 32.4 m×6.9 m×5.4 mの大型 無響室となっている。

また、無響室の特色として、回転台移 動機構と計測器収納機構がある。無響室 内に常置されている3軸回転台は1.2 m× 1.2 mの可動式床29枚により、最大15.6 m まで移動できる。図2右上の計測器収納 機構は、広さ2.2 m×2.2 mの床面の電波 吸収体をその横の電波吸収体の下部へ収 納することができ、大規模なモデル実験 等に必要な多くの計測器を収納する。

3. 基礎実験

2. で述べた無響室の基本特性を確認 した後に、10 GHz 測定で一組の標準ゲイ ンホーンアンテナ、および 94 GHz 測定で 当研究所が開発した 94 GHz ミリ波レー ダ[2,3]を用いて基礎実験を行った。図 3 にその外観を示す。

図 3 レーダとホーンアンテナ

図3右が10 GHz ホーンアンテナであり、 左が94 GHz ミリ波レーダである。当レー ダアンテナは直径30 cmの送受信用カセ グレンアンテナ2式であり、そのビーム 幅は±0.5度程度である。FM-CW(周波数 変調連続波)方式を採用したレーダは反 射物からの距離に応じて、送信波と受信 波をミキサで掛け合わせてできるビート 周波数が変化し、そのスペクトラムの周 波数から反射物までの距離が測定できる。 このため、局所的な壁面反射場所の特定 も容易である。

3.1 電波吸収体の電波透過性能

10 GHz ホーンアンテナを図 4 (a)のよう に床面から 1.57m の高さで 2.4m 離して対 向設置した。それらの間に図 4(b)のよう に壁面の電波吸収体と同様の構造である 電波波吸収体衝立を設置し、その電波透 過試験を行った。

図4 電波透過特性の測定概要

衝立は 2 m×1 m×0.6 m であり、壁面構 造と同様に 1.5 cm のベニヤ板上に電波吸 収体を貼り付けている。比較のために図 4(c)のように 2.4 m×0.6 m×0.4 m の他社 製発泡ポリプロピレン電波吸収体をその 端の位置が前述の衝立の端の位置と同じ 0.6m になるよう設置して実験した。

図5に電波吸収体衝立と比較用電波吸 収体の測定結果を示す。縦軸の振幅は電 波吸収体を置かない場合の振幅のレベル で正規化した。実験結果から、電波吸収 体衝立の電波減衰量は約70dBである。一

方、比較用電波吸収体での減衰量は約 50dB で、本無響室用の吸収体のそれより 20dB 程度小さくなった。ただし、2 種類 の吸収体は厚さが異なり、かつ、ホーン

図 5 電波吸収体衝立の透過性能

アンテナと被験電波吸収体との間隔が異 なることから,この値の違いが電波吸収 体の吸収性能を直接的に反映している訳 ではない。測定中に電波吸収体衝立を±20 度ほど水平に回転させ角度を変化させた。 受信レベルの変化は少なく、入射される 電波は電波吸収体衝立をほとんど透過し ていない。これらの結果から入射波は電 波吸収体で吸収あるいは反射されている ことがわかる。

3.2 10GHz 標準ゲインホーンアンテナを用い た壁面反射測定

図6に示すように、壁面から約5mの 位置に 10 GHz 送信用、受信用ホーンアン テナを1組設置した。側壁の電波吸収体 の

突起の間に

直径 7 inch (約 18 cm)の

円 形のアルミニウム板を設置して、それを 標準反射板とした。10 GHz における標準 反射板のレーダ反射断面積の理論値は8.6 m²である。送受信アンテナを動かし、壁 面入射角度を5度、10度、15度と変化さ せて壁面からの反射を測定した。送信ア ンテナと受信アンテナの間に電波吸収体 衝立を設置したため、送受信アンテナ間 による直接的な電波の入射はほとんどな いと考える。図6に示すように送信アン テナ前面に入射波を遮る様に電波吸収体 衝立を設置し、それを動かすことでスイ ッチング操作を模擬した。図7は、反射 体のある場合と、壁面のみの場合とで

図 7 10 GHz における標準反射板と 無響室壁面の電波反射強度

反射波測定を行った結果である。縦軸の 振幅は標準反射板の最大反射断面積の理 論値、および理想状態における各角度に おける反射断面積を用いて正規化した。 実験結果より、壁面入射角度が5度と10 度においては約50dB、15度においては約 45dBの電波減衰量となった。したがって、 壁面からの電波反射レベルは非常に小さ く、入射した電波は吸収体によってほと んど吸収されているといえる。

3.3 94 GHz ミリ波レーダによる測定

レーダを大型自動ドアから約 27 mの地 点に設置し、ドアの前から約 2.5 m(レー ダから 24.55 m)の位置に 3 面コーナリ フレクタを設置して測定した 94 GHz ミ リ波レーダによる測定結果を図 8 と図 9 に示す。94 GHz におけるコーナリフレク タの反射断面積の理論値は 658 m²である。

図 8 94 GHz ミリ波レーダによるコー ナリフレクタの反射特性

図 9 ドア前面の電波吸収体衝立を除 いた場合の測定結果

測定では大型自動ドア前面に電波吸収 体衝立を設置した場合と設置しない場合 とで比較した。図 8 は大型自動ドア前面 に追加の電波吸収体衝立を設置した場合、 図 9 は衝立を除いて測定した場合の測定 結果である。両図ともに、上のグラフが 瞬時のスペクトラムであり、下のグラフ がそれらを擬似カラー表示で時間的な測 定値の変化を表示するスペクトログラム である。スペクトログラムの横軸は周波 数、縦軸は時間を示し、図8と図9にお ける白い筋が反射物の存在を表す。コー ナリフレクタまでの距離 24.55 m に相当 するビート周波数は図 8より 472.5 kHz で ある。また、図 9 と比較すると、コーナ リフレクタからの信号の他に、その位置 より遠い距離に反射物があることが確認 できる。その距離は大型自動ドアの縁付 近にあたる。このドアの前面と壁面は電 波吸収体が敷き詰められている。しかし、 ドア開閉時におけるドア表面に張られた 電波吸収体の物理的干渉と電波吸収体同 士の摩擦の軽減のため、図 10 に示すよう にドアの縁に約3cmの隙間があり、金属 部分が露出している。

図 10 ドアの金属露出部

これらの結果から、図 9 の 2 重線のようにドア周囲において相当の反射が測定 される。これらの反射は前述の金属の露 出部により生じているため、それらを全 体的に覆うように電波吸収体を設置する ことにより、反射波を低減することがで きた。

このように上記のレーダはビーム幅が 極めて狭く、距離方向の分解能が高いた め、無響室内の反射物の位置を特定する ことが容易となった。

このため、上記以外にも本レーダを用いることで電波反射の箇所を特定することができた[4]。

4. 電波無響室の測定事例

無響室を利用した研究における測定事 例を紹介する。

4.1 ミリ波アンテナ放射特性測定

ミリ波帯におけるアンテナの放射特性 の測定例を図 11 に示す。ここで示された ビバルディアンテナは、当研究所と共同 研究を行っている仏国ニース大学が障害 物探知ミリ波レーダ用として開発したも のである。

図 11 94 GHz ビバルディアンテナと標準 ゲインホーンアンテナの放射特性

この図によりアンテナ放射特性、94GHz ホーンアンテナとの比較によるアンテナ 利得等が明らかとなった[5]。

なお、無響室ではアンテナ開発に際して 重要となるアンテナインピーダンス測定 も試験システムのソフトウェアと回路を 切り換えて測定できる。

4.2 電子機器の電磁放射測定

無響室のシールド特性を利用して、市 販の電子機器の電磁放射測定を行った結 果を図 12 示す。

図 12 2.4GHz 無線 LAN システムの無線 周波放射妨害

図 12 は 2.4GHz の無線 LAN システムの 無線周波放射妨害を示すグラフである。 構成機器の 6 面が測定され、6 面の中から 同一周波数で放射の最大値が選択されグ ラフが作成されている。グラフには航空 機搭載航法計器について米国航空無線技 術協会(RTCA)が定める電磁放射の許容値 も同時に示してある[6]。一部の周波数で 許容値を超える電磁放射が検出された[7]。

4.3 その他

上記以外にも当研究所の多くの研究で 利用されている。今後は、種々の共同研 究、受託研究等でも、ミリ波帯における 電波天文用アンテナの測定、航空機の着 陸を模擬したスケールモデル実験、レー ダ反射断面積の測定等の実験が計画され ている。

5. まとめ

本稿では、まず当研究所の電波無響室 の概要について述べた。次に 10 GHz にお ける電波無響室内の壁面反射について実 験的に考察した。94 GHz ミリ波レーダを 用いた測定において、広い空間内のわず かな反射箇所を詳細に特定できることを 示した。 10 GHz の壁面反射測定によって壁面用 電波吸収体の電波吸収特性は非常に良好 であることを示した。更に、94 GHz ミリ 波レーダを用いることで、大型自動ドア 縁部にわずかに露出している金属から電 波の反射があることが観測された。この ことから、追加の電波吸収体衝立等を用 いた適切な防止策を施すことで、より良 い測定環境を実現できることを示した。 また、電波無響室を利用した研究におけ る測定事例として、94 GHz ビバルディア ンテナの放射特性と 2.4 GHz 無線 LAN シ ステムからの電磁放射特性を紹介した。

最後に、このような大規模な 6 面電波 無響室は国内に少ない貴重な研究資源で ある。当研究所では所内の研究、共同研 究による利用、また受託試験による所外 の利用も進めている。近いうちには当電 波無響室の外部への時間貸し出しを検討 している。皆様のご利用をお待ちしてお ります。

文 献 [1] 長岡 政四、松田節雄、山本憲夫、田 中修一、二瓶子朗、"広帯域大型電波 無響室の特性について"、運輸省電子 航法研究所報告 No.29、December 1980

- [2] 山本憲夫、山田公男、米本成人、安井 英己、日比祥博、根日屋英之、Claire Migliaccio、"障害物探知用 FM-CW レ ーダ"、平成 14 年度(第 2 回)電子航 法研究所研究発表会概要、pp53-56、 June 2002
- [3] K. Yamamoto, K. Yamada, N. Yonemoto, H. Yasui, H. Nebiya, C. Migliaccio, "Millimeter Wave Rader for the Obstacle Detection and Warning System for Helicopters", IEE Rader 2002, October 2002
- [4] 米本成人、小瀬木滋、山本憲夫、山田 公男、"94GHz FM-CW レーダによる 電波無響室の壁面反射測定"、信学技 報、EMCJ2002-68, (2002-10)
- [5] C. Migliaccio, et al., "Vivaldi Antenna for Obstacle Detection and Warning System at 94GHz," Journees Internationales de NICE sur Les Antennes, (JINA 2002) Volume 1, No. 2.22, 2002, pp.279-282
- [6] RTCA,"Emission of Radio Frequency Energy", Section 21, Do-160D, July 29, 1997
- [7] 電波産業会"航法計器等への電波干渉
 に関する調査検討報告書"平成 15 年 3月