MRJ Features and Navigation Perspective

February 19, 2013

Information in this report is PROPRIETARY to Mitsubishi Aircraft Corp. This report must not be reproduced or distributed in whole or in part to a third party without prior express permission in writing from Mitsubishi Aircraft Corp.

Contents

MRJ Family

🙏 MITSUBISHI AIRCRAFT CORPORATION

General Arrangement - MRJ90

Principal Characteristics

		MRJ9	OSTD	MR	J90ER	MRJ	90LR
Passengers		92 (Typical single class)					
Cargo compartments	m ³ (ft ³)	18.2 (644)					
Engine		PurePower [®] PW1217G Engine					
Thrust	kN (lbf)	78.2 (17,600) x 2					
Maximum takeoff weight	kg (lb)	39,600	(87,303)	40,995	(90,378)	42,800	(94,358)
Maximum landing weight	kg (lb)	38,000	(83,776)	38,000	(83,776)	38,000	(83,776)
Maximum zero-fuel weight	kg (lb)	36,150	(79,697)	36,150	(79,697)	36,150	(79,697)
Operational empty weight	kg (lb)	25,100	(55,336)	25,100	(55,336)	25,100	(55,336)
Fuel capacity [†]	lit. (USG)	12,100	(3,200)	12,100	(3,200)	12,100	(3,200)
Range [*] @92PAX x 102kg (225lb)	km (nm)	1,670	(900)	2,400	(1,290)	3,310	(1,780)
Maximum operating mach number		M 0.78		M 0.78		M 0.78	
Maximum operating altitude	m (ft)	11,900	(39,000)	11,900	(39,000)	11,900	(39,000)
Takeoff field length (MTOW, SL, ISA)	m (ft)	1,490	(4,890)	1,600	(5,250)	1,740	(5,710)
Landing field length (MLW, Dry)	m (ft)	1,480	(4,860)	1,480	(4,860)	1,480	(4,860)
Approach speed (MLW)	km/h (kt)	252	(136)	252	(136)	252	(136)

† NOT include Unusable Fuel

* ISA, No Wind, LRC, Alternate 200nm

Performance

Range Capability from DENVER

Payload : MRJ90 92PAX X 102kg (225lb), MRJ70 78PAX X 102kg (225lb)

Contents

Key Concept

Environment

Lowest Fuel Burn, Noise, Emissions

Game-Changing EngineAdvanced Aerodynamics

Passengers

Most Comfortable Cabin

Passenger-Oriented CabinNew Comfotatable Seat

Airlines

Most Efficient Aircraft

Game-Changing Engine
 Advanced Aerodynamics
 Human-Centered Flight Deck
 Composite Structure

Four State-of-the Art Key Technologies

• Designed for lower fuel burn, noise and emission with state-of-the art technologies available

Environment

Lowest Fuel Burn, Noise, Emissions

Game-Changing EngineAdvanced Aerodynamics

Passengers

Most Comfortable Cabin

Passenger-Oriented Cabin
 New Slim Seat featuring
 3D-Net Fabric

Airlines

Most Efficient Aircraft

Game-Changing Engine
 Advanced Aerodynamics
 Human-Centered Flight Deck
 Composite Structure

Quietest Regional Jet

Quietest in its class **RJ "A" RJ "B" RJ "D" RJ "E" MRJ70 MRJ90** 0 5 Cumulative Quietel 16.8 Margin 19.0 to Chapter 4 10 Assumed upcoming noise standard (EPNdB) 15 20 Ver. 2.0

Significant Noise Reduction

- MRJ90 noise footprint 52% smaller versus RJ "E"
- Airlines can take advantage of lower community noise:
 - Lower noise charges
 - Extending operations into noise-related curfews
 - Operational savings by avoiding noise abatement flight tracks
 - Taxi time shortened by using preferred runways

* Mitsubishi Aircraft Estimation at Schiphol Airport (AMS)

Key Features - Environment Most Environmentally Friendly

Greenest in class & meeting future environmental requirements

Key Features - Environment Significantly Lower CO₂ Emissions

• Lower CO₂ emissions mean:

- Contributing to preventing global warming
- CO₂ trading cost benefits
- Enhancing corporate value

*Mitsubishi Aircraft estimation, 500nm Trip, 2,200 cycle/year

Environment

Lowest Fuel Burn, Noise, Emissions

Game-Changing Engine
 Advanced Aerodynamics

Passengers

Most Comfortable Cabin

Passenger-Oriented Cabin
 New Slim Seat featuring
 3D-Net Fabric

Airlines

Most Efficient Aircraft

Game-Changing Engine
 Advanced Aerodynamics
 Composite Structure

Future CNS/ATM environment suite Key Features - Airlines

Game Changing Fuel Efficiency

• MRJ will significantly reduce fuel consumption compared to current RJs.

* Mitsubishi Aircraft Estimation, Single Class Typical Seat, LRC, 500nm Trip

Environment

Lowest Fuel Burn, Noise, Emissions

Game-Changing Engine
 Advanced Aerodynamics

Passengers

Most Comfortable Cabin

 Passenger-Oriented Cabin
 New Slim Seat featuring 3D-Net Fabric

Airlines

Most Efficient Aircraft

Game-Changing Engine
 Advanced Aerodynamics
 Human-Centered Flight Deck
 Composite Structure

Key Features - Passengers Most Spacious Room At Window Seat

MITSUBISHI AIRCRAFT CORPORATION

MITSUBISHI AIRCRAFT CORP. PROPRIETARY

Cargo Compartment

• MRJ can accommodate 106 checked-in bags

*Bag size (cm): 79(L)x 53(W)x 28(H)

Contents

"Understand benefit of new CNS/ATM technologies, but ..." "Our business is very sensitive to cost vs. benefit in nature" "Retrofitting is too costly than expected benefit"

Introduction of **new aircraft** is **better solution** than retrofitting additional function one by one to the legacy aircraft

✓ Airlines Expect:

New aircraft equip all possible foreseen function for new ATM

Year	2008	2009	2010	2011	2012	2013	2014	2015	2016	2017	2018	2019	2020
	- - - - -		1 1 1 1	1 	 	1 	1 					 	
MRJ			 				 	ATI	N Baseline	1 (Contin	ental)		
	1	 	 				 						
Japan		FANS 1/	A (ACARS	, Oceanic)	1	 		1	1	 	FANS 1	A (Contin	ental)
						 			i i	 	i i		
	FANS 1/A (ACARS, Oceanic) FANS 1/A+ (VDL mode 2, Continental)							1					
USA	1 1 1	AC 20-	140A AC	120-70B	 	AC 20-1	40B & AC	120-70C	 	 	 	 	
UUA				те	0-01602	 		 		 	1	 	
ATN Baseline 1 (Continental)													
Furana						, 		1	İ				
Europe	AMC 20-1	1	Forv	vard Fit	Special ATN	Condition Baseline	ron <i>R</i> e 1	tro Fit					
	▼ 	 	 	/ 	 			<u>/</u> 	 	 	 	 	

Equipage Mandate

Navigation

Navigation

Novination	Guidance						
Navigation	Japan (JCAB)	USA (FAA)	Europe (EASA/JAA)				
RNAV/RNP Operations	Permission Standard and Check Procedure for RNAV operation	AC 20-130A* AC 20-138A*	-				
- RNAV 10 (RNP 10)	- Appendix 1	Order 8400.12B	EASA AMC 20-12				
- RNAV 5 (B-RNAV)	- Appendix 2	AC 90-96A	EASA AMC 20-4				
- RNAV 2	- Appendix 3	AC 90-100A	—				
- RNAV 1 (P-RNAV)	- Appendix 3 and 4	AC 90-96A AC 90-100A	JAA TGL 10 Rev. 1				
- Basic-RNP 1	- Appendix 7	AC 90-105	—				
- RNP APCH	- Appendix 5	AC 90-105	EASA AMC 20-27				
LPV	—	AC 20-138A*	EASA CRI F-18				
Baro-VNAV	Operational Standard for Baro-VNAV approach	AC 20-129* AC 90-105	EASA AMC 20-27				
VNAV for Non-Precision Approach	Approval Standard for the use of VNAV function by FMS equipment under non precision approach	AC 20-129*	_				
GPS Operations under IFR	S Operations under IFR Operational Standard for the use of GPS when flying under Instrument Flight Rules		EASA AMC 20-5				

* Application of AC 20-138B is under consideration.

Surveillance

Equipage Mandate

Contents

Avionics System

- Suite for Next Generation of regional aircraft operations:
 ✓ Future CNS/ATM Environment
 - Data link, RNP, Required Time of Arrival, ADS-B, etc.
 - ✓ Improvement for Situation Awareness
 - Higher integration of display information; Aircraft Sensor Information and ATM Data
 - User friendly operation and graphical display to reduce human error
 - → leading to <u>Higher level of flight safety</u>
 - ✓ Large Landscape Displays
 - ✓ Graphical Flight Planning/Cursor Control
 - ✓ Vertical Profile Display
 - ✓ Overlaid information on MAP/PFD

Flight Deck

Other Avionics & Flight Decks

RJ "A/B"

Å MITSUBISHI AIRCRAFT CORPORATION

MRJ

- Pro Line Fusion[™]: 2010s technology
 - Four 15.1 inch Large Landscape LCD

Lower LRU count

Higher Situational Awareness

- To overlay Navigation and ATM information on MAP
 To overlay Sensor information(TAWS,Windshear etc.) on PFD

MITSUBISHI AIRCRAFT CORP. PROPRIETARY

Avionics System

- Our Avionics system which including Adaptive Flight Display, CNS system and others are based on "Pro Line Fusion™" developed and TSO-certified by Rockwell Collins.
- Avionics system based four large landscape LCD displays' operation:
 - Outer panels: "Flight Task Indications". Its display integrated on two outboard displays which consist ADI, HIS, EICAS etc.
 - Inner panels: "Mission Task Indications" (i.e. MAP, ROUTE window, RADIO TUNE, FMS, CHECK- LIST etc.)

A MITSUBISHI AIRCRAFT CORPORATION

Avionics System

MFW (Multi Function Windows)

Cursor Control

Keyboard

- MFW enables:
 - ✓ COM/NAV Tune
 - ✓ ACARS, CPDLC
 - 🗸 Мар
 - ✓ Route
 - ✓ Vertical Situational Display

✓ FMS

- ✓ System (Synoptic) Pages
- ✓ Electronic Checklist
- ✓ Video Surveillance, etc.

FMS (Flight Management System)

FMS integrates all navigation functions and has the capability to control RNAV/RNP and SBAS (WAAS) operations to suit the next generation CNS/ATM environment.

VSD (Vertical Situation Display), large map used by GFP (Graphical Flight Planning) and Route Window which displaying flight plan progress on real time, these window contribute to a higher level of situational awareness.

A MITSUBISHI AIRCRAFT CORPORATION

MITSUBISHI AIRCRAFT CORP. PROPRIETARY

MFW (Multi Function Windows) - *i.e.* FMS ICDU

With CCP and MKP, avionics system function operations are possible via windows on MFW. This functionality ensures simple pilot action and enhances situational awareness; moreover, these benefits lead to safe and efficient flight operations.

A MITSUBISHI AIRCRAFT CORPORATION

MITSUBISHI AIRCRAFT CORP. PROPRIETARY

Flight Route Window

M ROUTE V ACT SEC	M ROUTE V
FMS1 ACT LEGS	
CRS DTG V LEG V SPD / ALT VPA V	ETA FUEL (LB) ISAA WIND TAS/GS
10.0 LHE /FL210	22:13 +00 8970 + 00 - 1 055T/ 41 455/451
098° 27.0 🔶 SAGRA 🕺/FL210	22:19 +00 8570 + 00 <u>- 1 0257 43</u> 459/451
098° 75.5 🛧 XAC [/FL210	22:30.0 + 00 7450 + 00 $(-1)020T/45$ 461/462
088° 86.8 * SPENS/FL210	22:32 + 00 7310 + 00 (-1)0307/48 461/449
98.8 TOD	22:35 7110
057° 103 + CAVIA/FL203	22:36 7030 <u>- 1 010T/ 47</u> 451/447
057° 109 ∻ WESTN/FL183	22:37 6970 DES DES DES
063° 132 ∻[0JC/11593	22:43 6570 DES DES DES
298° 154 ↔ KOITO ↓/ 3000A 3.00°	22:51 6090 DES DES DES
337° 160 ∻ MICKY ↓/ 3000 3.00°	22:52 6020 DES DES DES
337° 169 ∻_ <u>RW34L/</u> /	22:54 5890 DES DES DES
MISSED APPROACH	
$337^{-1} 1700 (300)7 500A$	22:54 5870 CLB CLB CLB
L1/7' 194 % [URAGA]/4500]	22:59 5390 CLB CLB CLB
	23:07 = $-1249T/20$ = $-1249T/20$
176° 211 Y (PUE 4500	
	22.08
	123.08
	DTG ETA FUEL (LB)
DEST \bigcirc RJTT 169 22:54 +00 5890 + 00	DEST2
ALTN O RJAA 211 23:10 +00 4670 + 00	DEST3 ()
COPY TO SEC OFFSET MM	DEST4
AUTO SEQ INHB IDX MSG ARRIVALS	
AUTO SEQ INHB IDX MSG ARRIVALS	

Contents

- ✓ Apr 2008 Mitsubishi Aircraft Corporation Commenced Operation
- ✓ Apr 2009 PDR (Preliminary Design Review)
- ✓ Sep 2010 CDR (Critical Design Review)
- ✓ Sep 2010 First Metal-Cutting Production Commenced
- ✓ Apr 2011 First Riveting Assembly Work Commenced
- ✓ Apr 2012 PW1217G Engine Test Flight Commenced

2013 First Flight

2015 First Delivery
Mitsabishi Regional Ier

Flying into the future.

Mitsubishi Regional Jet, an advanced concept and prominent technologies from Japan for the skies of the world.

http://www.mrj-japan.com/

A MITSUBISHI AIRCRAFT CORPORATION

MITSUBISHI AIRCRAFT CORP. PROPRIETARY

- Currently, MRJ will have "RNP APCH (with Baro-VNAV)" and "SBAS (WAAS) LPV" capability in the Basic Specification.
- Both features are categorized in Approach Procedure with Vertical Guidance (APV) which is capable of Vertical Guidance even though it is Lateral Guidance.
- LPV is not Precision Approach (ILS, MLS, etc.) and is base on a RNP concept; however, it is capable of accuracy greater than 40m for Vertical Guidance.

Approach Type		RNP APCH (w/Baro-VNAV)	SBAS (WAAS) LPV
FAA Guidance		AC90-105	AC20-138B
Con	cept	RNP concept	Non-RNP concept
Flight	Lateral	Based on GPS	Based on GPS
Guidance	Vertical	Based on baro-altitude info.	with SBAS (WAAS, etc.)
Horizontal Alert Limit (HAL)		0.3 NM (556m)	40m
Vertical Guidance		YES	YES
RF Leg		N/A*	N/A

*On MRJ, "RF Leg" can be used without approach phase.

Back Up Slides

Latest Avionics Technology

• Latest avionics technology enhances safety, maintainability, economical operations

A MITSUBISHI AIRCRAFT CORPORATION

MITSUBISHI AIRCRAFT CORP. PROPRIETARY

Engine

PurePower® PW1217G Engine Architecture

Comprehensive suite of technologies – much more than just the gear

Replaceable

Modules

- Integrated Modular Avionics enables:
 - Advanced performance throughout life cycle
 - Easy upgrades or modifications
 - Replacement of separate modules
 - Simple software downloads
 - Low costs to enhance capabilities
 FMS
 Function
 Module
 Cabinet
 New
 Function

Major Partners

• Industry-leading partners working with us.

- Display system consists of four large 15.1" LCD, a dual-channel DMC (Data Concentrator Unit Module Cabinet) which interfaces with other systems, and two IPCs (Integrated Processing Cabinet) which provide the switching hub function for ARINC 664 databus.
- Displays, IPC and DMC are connected with avionics high speed databus (ARINC 664). Other devices (navigation sensors, air data sensors, engine (FADEC), hydraulic system etc.) are connected to DMC via ARINC429.
- Digital Flight Data Recorder "DFDR" is connected via ARINC717
 - Solid state type recorder: Minimum recording time 25hr, Recording rate 512WPS*
 - DFDR complies with the latest FAA 14 CFR amendment, and is installed separately from CVR.
 *WPS - Words Per Second

- > CatIII operation available via flight director guidance, etc.
- Once basic T/C is achieved, aircraft characteristics will be reflected in the flight simulator (a process that takes approximately one (1) year). Auto land capability is planned to be offered as an option in 2016 or later if customer commitments are received by 2011.

Performance

Range Capability from HONG KONG

Payload : MRJ90 92PAX X 102kg (225lb), MRJ70 78PAX X 102kg (225lb)

📩 MITSUBISHI AIRCRAFT CORPORATION

MITSUBISHI AIRCRAFT CORP. PROPRIETARY

Performance

Range Capability from PARIS

ISA, 85% Annual Wind, LRC @37,000ft, Alternate 200nm Payload : MRJ90 92PAX X 102kg (225lb), MRJ70 78PAX X 102kg (225lb)

MITSUBISHI AIRCRAFT CORP. PROPRIETARY

Avionics Components

Display Arrangement

- Integrate "Flight Task Indications" to pilot's front display
 - PFD
 - Engine Indication (not "conventional center position")
 - CAS window
 - Primary Radio Tune window

Pilot can obtain all essential flight information through this single display.

Display Arrangement

• Integrate "Mission Task Indications" to inboard display

A MITSUBISHI AIRCRAFT CORPORATION

MITSUBISHI AIRCRAFT CORP. PROPRIETARY

What Category of LPV?

Approach Procedure with Vertical Guidance (APV)

- As per "ICAO Annex 6 Part 1", APV is one of Instrument Approach Procedures (IAPs) and includes "RNP APCH w/ Baro-VNAV", "RNP SAAAR", "WAAS LPV", etc.
- ICAO goal is to implement APV by 2016, either as the primary approach, or as a back-up for precision approaches.
- LPV is not necessary for ground infrastructure (ILS, MLS, etc.). It is fully suited for regional jet operations.

	Instrument Approach Classification		Lateral Guidance	Vertical Guidance	Example	
Instrument Approach Procedure (IAP)	Non-Precision Approach		Yes	No.	 LOC, LOC BCRS VOR, VOR/DME NDB ASR PAR RNP APCH (LNAV only), etc. 	
	Approach Procedure with Vertical Guidance (APV)		Yes	Yes, but it doesn't meet the requirements for precision approach	- RNP APCH w/ Baro- VNAV - WAAS LPV (-RNP SAAAR), etc.	
	Precision Approach	CAT I	Yes			
		CAT II		Yes, with minima as	- S	
		CAT IIIA		determined by each category.	- MLS	
		CAT IIIB			- GBAS CAT I, etc.	
		CAT IIIC				

- WAAS LPV (Localizer Performance with Vertical Guidance)
 - More Accurate
 Horizontal Alert Limit: RNP 0.1 (186m) > WAAS LPV (40m)
 - Improved Low Visibility Operations

Minima: Usually **RNP APCH**, (RNP SAAAR) > **WAAS LPV**

Approach Type		RNP APCH (w/ Baro-VNAV)RNP SAAAR* *Not for MRJ		SBAS (WAAS) LPV	
FAA Guidance		AC90-105 AC90-101		AC20-138B	
Concept		RNP concept	Non-RNP concept		
Flight Lateral		Based on GPS	Based on GPS		
Guidance	Vertical	Based on baro-altitude info.	with SBAS(WAAS etc.)		
Horizontal Alert Limit (HAL)		0.3 NM (556m)	0.1 - 0.3 NM (186-556m)	40m	
Vertical Guidance		YES YES		YES	
RF Leg		N/A Available		N/A	

H

1

0

6000

6

VE-3,

Lower minima is applicable for WAAS LPV.

A MITSUBISHI AIRCRAFT CORPORATION

Passenger-Oriented Design

• Largest cabin space in class

Engine

PW1000G Core Tests Completed

• Over 260 test hours completed

- Key Accomplishments
 - Component performance and operability met performance expectations
 - Dynamics Survey
 - Performance / Mapping & Optimization
 - Low Power Operability: Stall Mapping
 - High Power Operability: Surge & Distortion
 - Squeeze Test / HPT Performance

Core Performance Met All Requirements

Engine

Step Change in Efficiency

Incremental Improvement

PurePower® PW1000G Engine

Step Change Improvement

LPC : Low Pressure Compressor LPT : Low Pressure Turbine Interior

Flexible Interior Arrangement

- Flexible interior arrangement
- Shorter TAT

Payload-Range Capability - MRJ90

Overhead Bin Comparison

• MRJ O/H bin accommodates maximum-sized carry-on bags allowed by airlines.

MRJ can accommodate IATA-recommended maximum size bag

		Allowable Size (cm)		MRJ	RJ "A/B"	RJ "D/E"
		W	L			
IATA recommendation AmericanAirlines BRITISH AIRWAYS	25	45	56	 		
UNITED Continental Airlines	23	35	56	✓	\checkmark	\checkmark
	23	36	56	×	\checkmark	\checkmark
Alaşka Airlinez	25	43	61	×		
	25	35	55	×	\checkmark	\checkmark
😪 Lufthansa	20	40	55	✓	~	\checkmark

A MITSUBISHI AIRCRAFT CORPORATION

Cargo Compartment

Cargo Compartment - Comparison

- MRJ utility beyond what current RJs can offer:
 - Higher workability
 - Large cargo door

	RJ "E"	MRJ90	RJ "B"
	Non stand-up cargo compartment	Stand-up cargo compartment	Uncommonly inaccessible cargo door
Workability		* Person Scale: 74 in (1.88 m) (US Male 97.5 %ile)	
Cargo Door	All cargo doors of insufficient size 43.3in 43.3in 43.3in 43.3in 43.3in 43.3in 43.3in 43.3in 43.3in 43.3in 43.3in 43.3in 43.3in 43.3in	Large cargo door Sufficient space around door 39.4in 43.3in	RJ "B" cargo door has dead space 43.0in Dead space 33in

- Communication System consists of subsystems such as VHF Communication System, Audio Integrating, Cockpit Voice Recorder, and Integrated Automatic Tuning.
- Solid state-type CVR recorder with a minimum recording time of 2hr.
- Major equipment is supplied by Rockwell Collins and is mostly TSOapproved.

ATA34 Navigation

- Navigation system includes the following subsystems:
 - flight environment data (ex: air data system)
 - attitude and direction (ex: attitude heading reference system)
 - landing and taxing aids (ex: radio altimeter)
 - independent position determination (ex: terrain awareness and warning system)
 - dependent position determination (ex: VHF navigation system)
 - flight management computing (flight management system)
- System has Cat II, RNP(0.3) and Baro V-NAV capability.
- Major equipment is supplied by Rockwell Collins and TSO-approved.

Contents

Communication Navigation and Surveillance (CNS) systems are strongly desired to adopt next generation **CNS/ATM** technologies for regional jet operations because these technologies enhance efficiency and safety of flight.

On the other hand, CNS systems have to integrate so many equipments from legacy radios to advanced technology components. All components are equally high reliablity and oprability.

Our CNS system are highly integrated based on new "ProLine Fusion system" However, each CNS components are carefully selected matured and well field-proven components for guaranteed safety of flight.

Communication Data link communication CPDLC* Broadband communication Swift Broadband SATCOM* Navigation Performance Based Navigation (PBN) Parformance Based Navigation

*Option

CNS systems consist of Baseline and Option subsystems, defined as:

- *Baseline*: Regulation-mandated systems, or equipment that is required by the such systems.
- *Option*: Systems required for specific operations and/or marketunique requirements.

CNS Options (1/3)

Communication System Items **Descriptions** VHF For European specifications, baseline 25kHz spacing VHF transceivers can replace 8.33kHz versions. Communications (8.33kHz Spacing) ACARS For VHF data link capability, 3rd VHF transceiver, antenna and printer are added and Radio Interface Unit is replaced by data link type RIU. The data link function provides VDL Mode A and Mode 2 capability. Data link capability requires subscribing to a data link service provider. (ACARS: Aircraft Communication Addressing and Reporting System) CPDLC (ATN) CPDLC software is added for 2-way data communication between pilot and ATC. Current CPDLC is not applicable for FANS. CPDLC requires 3rd VHF Comm/Data link (ACARS) option. (CPDLC: Controller Pilot Data Link Communications) SATCOM with Swift For Satellite Communication capability, SATCOM transceiver, Broadband Diplexer/Low Noise Amplifier, High Speed Transceiver and High Gain Antenna are added. It is possible to use ACARS and CPDLC data link in combination with ACARS and IRS options. Extended overwater communications require HF or SATCOM communication system.

CNS Options (2/3)

Navigation and Surveillance System

Items	Descriptions
IRS: Inertial Reference System (replaces AHRS)	 For high accuracy and stability of attitude, heading and position data, two baseline AHRS are replaced by two IRS. AHRS complies with MRJ basic operations. Moreover, IRS enhances the following capabilities: High accuracy navigation (HUD, RNAV10, VNAV, etc.) SATCOM
Mode S Transponder with ADS-B out function	Baseline transponder is replaced by transponder capable of transmitting ADS-B data. ADS-B continuously broadcast messages including aircraft position, heading and velocity etc. (ADS-B: Automatic Dependence Surveillance - Broadcast)
Weather Radar System with Predictive Winds Shear	For Predictive Winds Shear capability, baseline WXR receiver/transmitter antenna is replaced by MultiScan/FLW Weather Radar. Predictive winds shear function provides appropriate visual and aural cautions, warnings and messages to the flight crew before the wind shear becomes an immediate threat to the aircraft. (WXR: Weather Radar, FLW: Forward Looking Wind Shear Radar)

CNS Options (3/3)

Items	Descriptions		
FMS: 2 nd Flight Management System with GPS and DME	For reliability improvement of FMS, Common Computing Module, 2nd FMS software, 2nd GPS receiver, 2nd GPS antenna, 2nd DME Transceiver and 2nd DME antenna are added. Cross-talk buses synchronize flight plan changes between the FMS systems. Sensor data is independently provided to each FMS.		
HUD: Head Up Display System	For Improved Situational Awareness and Category II approach capability, Overhead Unit (OHU), Combiner and HUD Graphics Card are added, and necessary to replace two AHRS with two IRS. HUD is a flight information display system that presents information as a collimated image that is focused at optical infinity so that the pilot can simultaneously focus on the HUD image and outside the aircraft.		

- SBAS (WAAS) improves position accuracy and availability. Its geostationary satellites provide aircraft augmentation information which is processed with differential correction and determines integrity using GPS frequencies.
- MRJ designed to operate with signals from any SBAS developed to RTCA DO-229().
- MRJ installed with GPS receiver and antenna which has the capability for three (3) types of SBAS (WAAS in US, MSAS in Japan, EGNOS in Europe).

EGNOS MSAS WAAS		US	Japan	EU
INMARSAT	SBAS	WAAS	MSAS*	EGNOS**
	Core system	GPS	GPS	Galileo
GPS GPS	SBAS Augmentation Satellite	INMARSAT	MTSAT	INMARSAT
Copyright: MLIT	* SBAS approa in Japan.	ach by MTSA	T is under dev	velopment

** Galileo is under development and EU plans to begin system operations after 2014.

SBAS (Satellite-Based Augmentation System)

- GPS receiver available for enrooted, terminal, and ocean RNAV and RNP operations. However, greater accuracy and integrity is required for approach phases.
- SBAS (WAAS) enhances and ensures GPS signal integrity to support ICAO/FAA Required Navigation Performance (RNP) criteria.
- MRJ has SBAS (WAAS) capability sufficient for "RNP Approach, with Baro-VNAV (greater than 0.3)" and "Localizer Performance with Vertical guidance (LPV)" approach as Cat I. "RNP SAAAR" is one of potential growth features for the MRJ.
- LPV approved by FAA in 2003. Approximately 500 US airports per year are adding LPV. LPV not necessary for costly ground infrastructure (ILS, MLS, etc.) and is much more appropriate for regional jet operations.

MRJ Capability for Future CNS/ATM

			MRJ
Communication		CPDLC (<i>ATN</i>)	O (option)
	RNAV ¹	RNAV 10	O (option)
		RNP 4	(under development for FANS) ²
		RNAV 5	0
		RNAV 2	0
		RNP 2	0
Navigation		RNAV 1	0
		Basic-RNP 1	0
		RNP APCH	0
		RNP AR APCH	(under development)
		SBAS (inc. LPV)	0
		GBAS (GLS)	
Surveillance		ADS-B out	O (option)
	1	Notes: 1B	ased on EAA AC90-105 RTCA DO-128B DO-236B

lotes: ¹Based on FAA AC90-105, RTCA DO-128B, DO-236B ²CPDLC applicable for ATN, but not FANS.
Company Profile

Mitsubishi Aircraft Corporation

MITSUBISHI AIRCRAFT CORP. PROPRIETARY

Company Profile

Business Structure & Investors

