

[EN-041] A Study on Benefits Gained by Flight Trajectory Optimization for Modern Jet Passenger Aircraft

EIWAC 2013 The Third ENRI International Workshop on ATM/CNS 19-21 February 2013, Tokyo Japan

N.K. Wickramasinghe[†], H.Totoki, A. Harada and Y. Miyamoto Graduate School of Engineering, Kyushu University Fukuoka Japan

- Outline -
- Premise of Study
- Research Motivation
- Mathematical Formulation
- Dynamic Programming Method
- **Utilized Models** Meteorological Model, Aircraft Performance Model
- Reference Data
- **Flight Trajectory Optimization** Examples & Effect of Wind Shear
- Conclusions

- Premise of Study -

Courtesy: CARATS Long Term Vision for the Future Air Traffic Systems

- Research Motivation -

Towards an Efficient Operational System... "Free Flight"

- Safe and efficient User Priority flight path and speed selection in real time according to weather conditions
- ✓ System's flexibility to manage capacity increase
- ✓ Economic benefits such as Fuel Consumption Reduction with Departure→Arrival direct approach

Reviewing the benefits obtained by flight trajectory optimization by minimizing fuel consumption considering the presence of winds in a Free Flight based futuristic Air Transportation System

- Requirements for Analysis -

Optimization Tool

- Mathematical Formulation -

3D- Translational Motion : $P_1(\phi_1, \theta_1, H_1, V_{TAS_1}) \rightarrow P_2(\phi_2, \theta_2, H_2, V_{TAS_2})$

$$\dot{\phi} = \frac{V_{\text{TAS}} \cos \gamma_a \cos \psi_a + W_v(\phi, \theta, H)}{R + H}$$
$$\dot{\theta} = \frac{V_{\text{TAS}} \cos \gamma_a \sin \psi_a + W_u(\phi, \theta, H)}{(R + H) \cos \phi}$$
$$\dot{H} = V_{\text{TAS}} \sin \gamma_a$$
$$m\dot{V}_E \cos(\gamma_a - \gamma)\dot{V}_{\text{TAS}} = T - D - mg \sin \gamma_a$$

R : Earth radius

 γ_a : Flight path angle

 Ψ_a : Heading angle

 W_{μ} : Zonal wind component

- : Latitude Ø
- : Longitude θ
- : Altitude H
- V_{TAS} : True airspeed
- : Engine thrust Т
- : Aerodynamic drag D
- : Aircraft's speed on Earth Frame V_{F}

- Dynamic Programming Method -

Performance Index :
$$J_{opt} = \int_{t_0}^{t_f} FF dt$$
 (FF: fuel flow)

Reference: [EN-040] Harada, A., Miyamoto, Y. and Wickramasinghe, N.K.,

"Flight Trajectory Optimization Tool with Dynamic Programming Developed for Future Air Transportation System"

- Meteorological Model -
- Weather data from Japan Meteorological Agency (JMA)

Data Format	GRIB2 Grid Point Value (GPV) Data		
Initial Time Value	00, 06, 12, 18 (UTC)		
Region	Longitude: $120^{\circ} \sim 150^{\circ}$ [deg] Latitude: $20^{\circ} \sim 50^{\circ}$ [deg]		
Resolution	Longitude Direction: 0.25° [deg] Latitude Direction: 0.20° [deg]		
Pressure Altitude	1000,925,850,700,600,500,400,300,250,200,150,100[hPa]		
Physical Elements	Geopotential Altitude, Zonal wind, Meridional wind, Temperature, vertical flow		

Characteristics of GSM Japan Region Model

- Aircraft Performance Model -
- BADA (Base of Aircraft Data) by EUROCONTROL

- Reference Data -

Reference: [EN-039] Totoki, H. and Wickramasinghe, N.K., "A Study on Flight Trajectory Estimation by Using GPS Data Measured in Airliner Cabin"

- Problem Setting -

Calculation Conditions					
Reference Route	Haneda :35.5483 ⁰ N 139.9078 ⁰ E Fukuoka:33.8903 ⁰ N 130.3317 ⁰ E				
Downrange	30 Grid points				
	Minimum	3000[m]	100		
Annude	Maximum	13000[m]	Grid Points		
Calibrated	Minimum	100[m/s]	60		
Airspeed	Maximum	160[m/s]	Grid Points		
Cross range	2.5[deg] on each side of Great Circle Route 100 Grid Points				

Date (YY/MM/DD)	Departure / Arrival	Flight Time			
2011/06/18	FUK / HND	14:02 / 15:20			
2011/06/19	HND / FUK	20:00 / 21:48			
2011/06/26	HND / FUK	19:58 / 21:28			
2011/07/31	HND / FUK	19:59 / 21:30			
2011/08/28	HND / FUK	18:50 / 20:31			
2011/09/02	FUK / HND	09:53 / 11:30			
2011/09/24	FUK / HND	10:57 / 12:20			
2011/10/01	FUK / HND	15:04 / 16:22			
2011/10/02	HND / FUK	19:54 / 21:41			
2011/10/08	FUK / HND	16:11 / 17:29			
2011/10/10	HND / FUK	11:22 / 12:59			
2011/10/15	FUK / HND	16:04 / 17:42			
2011/10/17	HND / FUK	10:20 / 12:00			
2011/10/21	FUK / HND	9:55 / 11:20			

Reference Data List

- Boundary values: Identical 3D-position and Calibrated Airspeed
- > Initial mass of aircraft: Reference mass from BADA model
- > Aircraft configuration: Clean Configuration of a twin engine wide body jet aircraft

KYUSHU UNIVERSITY A Study on Benefits Gained by Flight Trajectory Optimization for Modern Jet Passenger Aircraft

Thrust for Optimal Route

11

- Application example (1) -

KYUSHU UNIVERSITY

A Study on Benefits Gained by Flight Trajectory Optimization for Modern Jet Passenger Aircraft

7000 3.5 -Optimal - Optimal - Application example (2) -6000 GPS Track FFC [kg/kgf/hour] 5000 2.5 [Date: 2011/06/19] HND→FUK [) 4000 [9] 3000 2000 1000 0.5 12000 10000 8000 6000 4000 -Optimal GPS Track 0 0<mark>L</mark> 0 2000 Flight time [s] 3000 4000 2000 3000 1000 1000 Flight time [s] **Fuel Flow Fuel Consumption** 4000 2000 2000 Flight time [s] 2500 500 1000 3000 3500 1500 4000 0.9 18 Altitude 17 0.8 Drag 11/Drag Часн Масн 180 [160 sw] 140 > 120 0.6 14 Optimal GPS Track -Optimal 0.5 13<mark>_</mark>0 GPS Track 1000 2000 3000 4000 1000 2000 3000 100<u></u> Flight time [s] Flight time [s] 2000 Flight time [s] 2500 500 1000 1500 3000 3500 4000 Mach Number Lift Drag Ratio **Calibrated Airspeed** 3<u>× 1</u>0^t 3^{⊻ 10[₺]} 2.5 2.5 -Optimal ر 250 عمل 200 المحمد 200 المحمد 200 المحمد 200 المحمد 200 المحمد 200 GPS Track Thrust [N] Thrust [N] 0.5 100 2000 Flight time [s] 500 1000 1500 2500 3000 3500 4000 0.5 Required Thrust 0 -Max Thrust -Max Thrust -0.5 01 **True Airspeed** 2000 3000 2000 3000 1000 4000 1000 Flight time [s] Flight time [s]

Thrust for Optimal Route

4000

4000

Optimal

GPS Track

Thrust for GPS Route

GPS Track

4000

- Application example (2) -

KYUSHU UNIVERSITY

A Study on Benefits Gained by Flight Trajectory Optimization for Modern Jet Passenger Aircraft

- Application example (3) -[Date: 2011/10/15] FUK→HND

Thrust for Optimal Route

Thrust for GPS Route

- Application example (3) -

- Quantitative Evaluation Results -

Average exceeding flight time: 5%

KYUSHU UNIVERSITY

A Study on Benefits Gained by Flight Trajectory Optimization for Modern Jet Passenger Aircraft

18

- Effect of Wind Shear -[Date: 2011/12/17] HND→FUK

Calibrated Airspeed

Thrust for 3D Route

Thrust for 4D Route

- Effect of Wind Shear -

<u>3D- Optimal Route</u> Fuel Consumption : 9651.08[kg] Flight Time : 6031[sec]

- Conclusions -

- Flight trajectory optimization plays an important role in the development of a futuristic ATS system and optimized flight trajectories in presence of winds would greatly increase the benefits such as fuel consumption of modern jet passenger aircraft.
- **Dynamic Programming Method** is introduced as an optimization tool for flight trajectory optimization. → **Reference: EN-040**
- Numerical weather prediction models provided Weather Data are highly accurate and can be well used to predict future weather conditions at flight planning.
- The used aircraft performance model, BADA Model possesses highly accurate aircraft performance data which can be used to evaluate fuel consumption.
- Using a simple GPS data logger to record a very few number of flight data parameters in an airliner cabin was sufficient to implement a substantial research and understand the structure of the ATC system. → Reference: EN-039
- An average fuel efficiency of 5% ~ 10% could be obtained by choosing a lower descent speed and a smoother descent rate with the application of Trajectory Based Operations.
- Overall optimization considering the tradeoff of fuel consumption and flight time would eventually contribute towards a futuristic Air Transportation System with great benefits.

Thank you for your kind attention.