Aviation Infrastructure Risk Assessment: Effect of Communication and Surveillance Facility Service Outages on Traffic Separations

EIWAC 2013 February 20, 2013

Sherry S. Borener, Ph.D. (FAA) Vitaly S. Guzhva, Ph.D. (MCR Federal)

Background

Measuring safety as an outcome variable in a High Reliability Organization is difficult and does not adequately capture the true safety state of the system Historic (forensic) approach cannot reveal emerging future hazards	Proactive approach is based on early identification, assessment, and mitigation of any credible hazards		
System Manag Transfor (SS	Safety ement rmation MT)		
System Safety Assessment (SSA) uses risk modeling and forecasting capability to identify potential risk issues	This study investigates how unscheduled service outages affect traffic separations		
SSA examines historical causes of events and potential future exposures to develop appropriate risk models	Unscheduled service outages are precursors that may lead to unsafe outcomes		

Integrated Safety Assessment Model (ISAM)

Midair Collision (MAC): ASAP Safety Concept Mind Map - Similarity to ESD

Aircraft on Collision Course: ESD US-31

			Ignoring TCAS					
ESD:	31		Colour coding			ų		
Initiating event:	Aircraft are positioned on	collision course in flight	Historical NAS data		would h	ave ne	aative	
Flight phase:	In flight		CATS data				90	
			Expert judgement		imnact	on this	: Fault	
			Calculation		impaor		o r aun	
	Click Here to Return to					Tree		
							FREQUENCY PER	FREQUENCY PER
				K	END EVENT	EVENT CODE	FLIGHT	FLIGHT (input)
	US31a1	US31b1	US31c1	3.09E-04				
	Aircraft are	ATC does not resolve	Flight crew	does not				
	positioned on	the conflict	resolve the	conflict				
	collision course in							
	flight				Collision in mid-air	US31d1_01	5.85E-09	5.85E-09
	6.84E-05	2.77E-01	3.09E-	-04				
	US31a1	US31b1	US31c1					
•F	ault Tree X	•Fault Tree Y	•Eault Trop	7				
			aut nee	2	Aircraft continues flight	US31d2_02	1.89E-05	
	Yes							
	↓ No							
					Aircraft continues flight	1162102 02		
						033162_03	4.900-00	
						Total	6 84F-05	
						, ota	0.012 00	

Background

What are the ATM safety implications?

Number of Outages vs. Number of Facilities (2007-2011)

All ATM Facilities

Surveillance Facilities

Navigation Facilities

•Communication Facilities

Annual Outage Ratios 2007-2011 Average

Study Objectives

Sample Construction

Unscheduled Service Outage Data in the vicinity of 15 major traffic hubs (2010–2011)

- Source: National Airspace System Performance Analysis System (NASPAS)
- 222 Communication and 116 Surveillance Facility Outages

Traffic Separation Data for Facility Service Volumes

- Radar track data for +/- 30 min of an outage. Source: Offload Extract of Sector Design and Analysis Tool (SDAT)
- Traffic separations estimated by ISA

TCAS RA Modeling by ISA

TCAS RA Modeling

Separation Conformance Categorization

ISA Separation Modeling

ISA Separation Modeling

ISA Separation Modeling

	N219RB
Intruder	SWA2357
Event Time	2012-08-30 17:01:11
Event Type	Sep. Catg A
Flight Attitude	DESCENT (DESCENT)
Ground Speed	340 (295) ki
Vertical Speed	-976 (-1826) fpm
Flight Level	4967 (4822) fi
Flight Path	CROSSING

Average TCAS RA Count

Actual TCAS RA Encounters MIT Lincoln Labs 2009 Study

Airport	Rate per operation	Rate per 1,000 flights
EWR	1 in 90	11.1
JFK	1 in 291	3.4
LGA	1 in 93	10.8
ISP	1 in 107	9.3
CDW	1 in 934	1.1
FRG	1 in 125	8.0
HPN	1 in 34	29.4
MMU	1 in 90	11.1
TEB	1 in 28	35.7
	Average	13.3

Average CAT A Event Count

Before and After Average Counts

-10%

Analysis Methodology

Count data analysis

- RA encounters; Loss of separation events
- Negative Binomial regression model

Continuous data analysis

- Separation index values
- Lognormal regression model

Count Data Analysis

Negative Binomial Regression Model

$$p(Y_i = y_i) = p(y_i) = \frac{\Gamma\left(y_i + \frac{1}{\alpha}\right)}{\Gamma(y_i + 1)\Gamma(\frac{1}{\alpha})} \left(\frac{1}{1 + \alpha\mu_i}\right)^{1/\alpha} \left(\frac{\alpha\mu_i}{1 + \alpha\mu_i}\right)^{y_i} \bullet, y_i = 0, 1, 2, 3, 4,$$

•where $\mu_i = E(Y_i) = w_i[e^{x_i'\beta}] = w_i[e^{\sum_{j=1}^k x_{ij}'\beta_j}]$ •, i = 1, 2, 3, ..., n.

 $Var(Y_i) = \mu_i + \alpha \mu_i^2$ •where $\alpha \ge 0$ – dispersion parameter

•Specifically:

$$SE_i = a + b_1 OUT_i + b_2 SUROUT_i + b_3 COUNTS_i + b_4 VOLDIS_i + e_i$$

- Where:
 - SE is a separation event (TCAS RA, Cat A, B, C, or PE)
 - OUT is a dummy variable that indicates if the service was out or not
 - SUROUT is a dummy variable that indicates that the facility that lost service was a surveillance facility
 - COUNTS is the number of traffic counts in the facility service volume
 - VOLDIS is the total distance in nm that all flights flown in the facility service volume during examined period
 - b1 and b2 are coefficients of interest; b3 and b4 are coefficients of variables that control for traffic density

Negative Binomial Regression Model Parameter Estimates

SE	Const.	OUT	<u>SE OUT</u> SE NOUT	SUROUT	COUNTS	VOLDIS
TCAS RA	-0.30*	0.27**	1.31	0.00	0.000056**	0.000017**
CAT A	-0.06	0.27**	1.31	0.00	-0.000031	0.000064**
CAT B	2.14**	0.14**	1.15	0.00	-0.000014	0.000018**
CAT C	1.60**	0.01	N/A	0.00	0.000018**	0.000009**
PE	1.76**	0.06**	1.06	0.00	0.000031**	0.000009**

indicates marginal (10%) statistical significance, indicates statistical significance (5% of better)

•Interpretation: coefficient of OUT indicates the difference of event count Logs. For example, for TCAS RAs: Log(RA with Outage) – Log(RA without Outage) = 0.27. So, Log(RA Out/RA No Out) = 0.27, making (RA Out)/(RA no Out) = 1.31. TCAS RA encounters are 1.31 times more likely in the service volume of the facility with service outage.

Results of the Separation Events Analysis

TCAS RA Encounters and Cat A separation events are 1.31 times more likely in 30 minutes following a service outage than in 30 minutes before an outage

Cat B events are 1.15 and PE events are 1.06 times more likely in 30 minutes following an outage. Cat C events are not affected by service outages

Surveillance facility outages are not marginally different from communication facility outages

Continuous Data Analysis

Separation Index Data

Ratio of actual minimum distance between aircraft at the same altitude to required separation distance. For example, if the minimum distance between aircraft was 6 nm when required separation was 5 nm, the separation index is 120%

Separation Index Data

Cannot be negative. Only data for aircraft within 10 nm of another aircraft is used

Lognormal Regression Model

Typically used when dependent variable cannot be negative

Should be controlled for traffic density in the facility service volumes

Lognormal Regression Model

$$Y = \beta' x + e$$
 •where y is positive $E[Y] = \beta' x$ •and $Var[Y] = \sigma^2 [\beta' x]^2$

•In this
$$E[LogY] = Log(\beta'x) - 2\sigma^2$$
 •and $Var[LogY] = \sigma^2$
model

•Specifically:

$$SI_i = a + b_1OUT_i + b_2COMOUT_i + b_3COUNTS_i + b_4VOLDIS_i + e_i$$

- Where:
 - SI is a separation index for aircraft within 10 nm of each other
 - OUT is a dummy variable that indicates if the service was out or not
 - COMOUT is a dummy variable that indicates that the facility that lost service was a communication facility
 - COUNTS is the number of traffic counts in the facility service volume
 - VOLDIS is the total distance in nm that all flights flown in the facility service volume during examined period
 - b1 and b2 are coefficients of interest; b3 and b4 are coefficients of variables that control for traffic density

Lognormal Regression Model Parameter Estimates

	Const.	OUT COMOUT		COUNTS	VOLDIS
SI	1.71**	-0.19**	0.15**	0.00	0.000005**

•** Indicates statistical significance (5% or better)

•Interpretation: coefficient of *OUT* indicates how the separation index was affected when a surveillance facility lost service – the separation index decreases by 19%. The coefficient of *COMOUT* indicates how the separation index was affected when the facility that lost service was a communication facility – the separation index increased by 15% comparing with a surveillance facility outage. Adding 15% to -19% results in -4%. The separation index decreases by 4% when a communication facility loses service.

Results of Separation Index Analysis

The separation index for flights within 10 nm of each other is 19 percent lower in 30 minutes following a surveillance facility outage than in 30 minutes before an outage

The separation index is only 4 percent lower for communication facility outages

Next Steps

Surface surveillance equipment outages (ASDE, ASDE-X) and RW incursions

- More than 12,000 runway incursions in the US from 2001 to 2013
- Do ASDE (-X) outages contribute to the likelihood of runway incursions?

ISAM

(Integrated Safety Assessment Model)

- ISAM depicts a complete risk picture and incorporates all of the aspects related to safety hazards collectively, including equipment outages
- Event Sequence Diagrams (ESDs) are quantified using US data
- Fault Trees (FTs) are used to model initial and pivotal events in ESDs
- Service outages will be integrated in FTs

Questions?

Thank you very much!

Federal Aviation Administration