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Trajectory Models

Aircraft Trajectory Features

Dimension Reduction Approaches

Front Propagation Approaches

Optimal Control Approaches
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Classical representation

t x y z

t=a

t=b

Trajectory data is expressed as an ordered list of plots (no aircraft
dynamics in such representation)
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Trajectories as functional data

Trajectories are infinite dimension mathematical objects

Trajectories as mappings

t0 t1

γ(   )t

Intuitive approach : a trajectory maps a bounded time interval [t0, t1]
to the state space (R3 or R6).

Smoothness assumptions are made for trajectories (C 2).

Trajectories as shapes

The paths flown by aircraft are considered as curves in R3.

Such time independant trajectories are called shapes.
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Aircraft Trajectories Features

Notations

t=a

t=b

Trajectory ~γ : ~γ[a, b]→ E ([a, b] time interval, E : R3 or R6)

Trajectory length l(~γ) =
∫ b
a ‖~γ

′
(t)‖dt

Parametrization by arclength : s(a, b)→ (0, l(~γ))
s(t) =

∫ t
a ‖~γ

′
(x)‖dx (s

′
(t) = ‖~γ′(t)‖ > 0 ∀t ∈ (a, b))
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Aircraft Trajectories Feature

Unit tangent vector

t=a

t=b
τ

~τ(s) = ~γ′(s)
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Aircraft Trajectories Feature

Curvature

K (s) = ‖~γ′′(s)‖ = ‖~γ′ (t)∧~γ′′ (t)‖
‖~γ′ (t)‖3

Aircraft trajectories have piecewise constant curvature.

Unit normal vector

t=a

t=b
τ

ν

~ν(s) = ~γ
′′

(s)
K(s)
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Aircraft Trajectories Feature

Torsion

.

t=a

t=b
τ

ν

β

~β(s) = ~τ(s) ∧ ~ν(s) ~β
′
(s) = T (s).~ν(s)

The real number T (s) is called the torsion of the curve at s and
represents an obstruction for the curve to be planar.

T (t) = −det(~γ
′
(t),~γ

′′
(t),~γ

′′′
(t))

‖~γ′ (t)∧~γ′′ (t)‖2

Aircraft have piecewise constant torsion mainly in terminal area.

All the previous derivations rely on the fact that the first three
derivatives of the trajectory are available.
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Trajectory Models

Aircraft Trajectory Features

Dimension Reduction Approaches

Front Propagation Approaches

Optimal Control Approaches
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Explicit vs Implicit

Explicit

y = f (x)

Example 2D line y = a.x + b
A curve may not have an explicit representation

Implicit

f (x , y) = 0

Example 2D circle x2 + y 2 − r 2 = 0
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Parametric Form

Expresses the value of each spatial variables for points in terms of an
independent parameter u.

~p(u) =

 x(u)
y(u)
z(u)
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Parametric Polynomial Curve

Consider a curve

~p(u) =

 x(u)
y(u)
z(u)


A polynomial parametric curve of degree n is of the form :

~p(u) =
n∑

k=0

~ck .u
k

where each ~ck has independent x , y , z components : ~ck = [ckx , cky , ckz ]T
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Advantages of the Parametric Polynomial Curve

Just needs to save a few control points

Local control of shape

Smoothness and continuity

Ability to evaluate derivatives

Stability

Ease of rendering
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Lagrangian Interpolation

Given n + 1 real numbers yi ,0 ≤ i ≤ n, and n + 1 distinct real numbers
x0 < x1 < ... < xn, Lagrange polynomial of degree n associated with {xi}
and {yi} is a polynomial of degree n solving the interpolation problem :

pn(xi ) = yi , 0 ≤ i ≤ n

Solution :

Ln(x) =
n∑

i=0

f (xi )li (x)

where

li (x) =
∏
j 6=i

(x − xj)

(xi − xj)
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Hermite Interpolation

Hermite interpolation generalizes Lagrange interpolation by fitting a
polynomial to a function f that not only interpolates f at each knot but
also interpolates a given number of consecutive derivatives of f at each
knot. [

∂jH(x)

∂x j

]
x=xi

=

[
∂j f (x)

∂x j

]
x=xi

for all j = 0, 1, ...,m and i = 1, 2, ..., k
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Runge phenomenon

Interpolation with high degree polynomial is risky...

Solution : Piecewise interpolation
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Piecewise Linear Interpolation

The simplest one

x0 xi xi+1xi−1 xn
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Piecewise Linear Interpolation

Given n + 1 real numbers yi ,0 ≤ i ≤ n, and n + 1 distinct real numbers
x0 < x1 < ... < xn, we consider the n linear curves li (x) = aix + bi on the
intervals [xi , xi+1] for i = 0, ...n − 1.

each li (x) has to connect two points {(xi , yi ),(xi+1, yi+1)}

yi = aixi + bixi yi+1 = aixi+1 + bixi+1

The resulting curves is not derivative.
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Piecewise Quadratic Interpolation

x0 xi xi+1xi−1 xn

Initial slope
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Piecewise Quadratic Interpolation

We consider the n quadratic curves qi (x) = aix
2 + bix + ci on the

intervals [xi , xi+1] for i = 0, ...n − 1.

Each qi (x) has to connect two points ((xi , yi ),(xi+1, yi+1)

yi = aix
2
i + bixi + ci

yi+1 = aix
2
i+1 + bixi+1 + ci

On each point the derivative of the previous quadratic has to be equal
to the derivative of the next one.

2ai + bi = 2ai−1 + bi−1

For the first segment the term 2ai−1 + bi−1 is arbitrarily chosen. (this
affects the rest of the curve).

D. Delahaye and S.Puechmorel and P.Tsiotras and E.Feron ( Applied Mathematics Laboratory (MAIAA) French Civil Aviation University Toulouse, France School of Aerospace Engineering Georgia Institute of Technology Atlanta, USA )Mathematical Models for Aircraft Trajectory Design : A Survey EIWAC 2013 TokyoFebruary, 21 2013 22 / 146



Piecewise Quadratic Interpolation

We consider the n quadratic curves qi (x) = aix
2 + bix + ci on the

intervals [xi , xi+1] for i = 0, ...n − 1.

Each qi (x) has to connect two points ((xi , yi ),(xi+1, yi+1)

yi = aix
2
i + bixi + ci

yi+1 = aix
2
i+1 + bixi+1 + ci

On each point the derivative of the previous quadratic has to be equal
to the derivative of the next one.

2ai + bi = 2ai−1 + bi−1

For the first segment the term 2ai−1 + bi−1 is arbitrarily chosen. (this
affects the rest of the curve).

D. Delahaye and S.Puechmorel and P.Tsiotras and E.Feron ( Applied Mathematics Laboratory (MAIAA) French Civil Aviation University Toulouse, France School of Aerospace Engineering Georgia Institute of Technology Atlanta, USA )Mathematical Models for Aircraft Trajectory Design : A Survey EIWAC 2013 TokyoFebruary, 21 2013 22 / 146



Piecewise Quadratic Interpolation

We consider the n quadratic curves qi (x) = aix
2 + bix + ci on the

intervals [xi , xi+1] for i = 0, ...n − 1.

Each qi (x) has to connect two points ((xi , yi ),(xi+1, yi+1)

yi = aix
2
i + bixi + ci

yi+1 = aix
2
i+1 + bixi+1 + ci

On each point the derivative of the previous quadratic has to be equal
to the derivative of the next one.

2ai + bi = 2ai−1 + bi−1

For the first segment the term 2ai−1 + bi−1 is arbitrarily chosen. (this
affects the rest of the curve).
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Piecewise Cubic Interpolation

Also called Hermite Cubic Interpolation

xi xi+1xi−1

iy
yi−1

yi+1

yi+2

xi+2

h

slope in i
slope in i+1

Ci (x) = aix
3 + bix

2 + cix + di

Ci (xi ) = yi Ci (xi+1) = yi+1

C ′i (xi ) = y ′i =
yi+1−yi−1

xi+1−xi−1
C ′i (xi+1) = y ′i+1 = yi+2−yi

xi+2−xi

Moving a point do not affect all the curve

The curve is C 1 but not C 2.
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Curvature radius

R =
1 +

(
df (x)
dx

) 3
2

|
(
d2f (x)
dx2

)
|

In order to have a continuous curverture one must force curves to be C 2.

D. Delahaye and S.Puechmorel and P.Tsiotras and E.Feron ( Applied Mathematics Laboratory (MAIAA) French Civil Aviation University Toulouse, France School of Aerospace Engineering Georgia Institute of Technology Atlanta, USA )Mathematical Models for Aircraft Trajectory Design : A Survey EIWAC 2013 TokyoFebruary, 21 2013 24 / 146



Cubic Spline Interpolation

Piecewise cubic interpolation

Developped by General Motor in the 1950s.

xi−1

yi−1 yi+2

xi+1

iy

xi

yi+1

S i (t)

xi+2

Si (xi ) = yi Si (xi+1) = yi+1

S
′
i (xi ) = S

′
i−1(xi+1) S

′
i (xi+1) = S

′
i+1(xi+1)

S
′′
i (xi ) = S

′′
i−1(xi+1) S

′′
i (xi+1) = S

′′
i+1(xi+1)
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Cubic Spline Interpolation

Si (x) for x ∈ [xi , xi+1]

Si (x) = σi
6 .

(xi+1−x)3

xi+1−xi + σi+1

6 . (x−xi )
3

xi+1−xi
+ yi .

xi+1−x
xi+1−xi −

σi
6 .(xi+1 − xi )(xi+1 − x)

+ yi+1.
x−xi

xi+1−xi −
σi+1

6 .(xi+1 − xi )(x − xi )

where

σi =
d2Si (x)

dx2

Such spline is also called natural spline because it represents the curve of
a metal spline constrained to interpolate some given points.
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Bézier Approximation Curve

Bézier curves were first developped by automobile designers to
describe the shape of exterior car panels in the 1960s and 70s.

Given points ~P0 and ~P1, a linear Bézier curve is simply a straight line
between those two points. The curve is given by

B(t) = ~P0 + t(~P1 − ~P0) = (1− t)~P0 + t~P1 , t ∈ [0, 1]

Bézier Curve with 2 points

P0

P1
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Cubic Bézier curves

BÉZIER CURVE

P3

P2

P1

P0

P0
P1

P2

Four points ~P0, ~P1, ~P2 and ~P3 in the plane or in higher-dimensional
space define a cubic Bézier curve.

The curve starts at ~P0 going towards ~P1 and arrives at ~P3 coming
from the direction of ~P2. Usually, it will not pass through ~P1 or ~P2 ;
these points are only there to provide directional information.
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Cubic Bézier curves

The polygon formed by connecting the Bézier points with lines,
starting with ~P0 and finishing with ~Pn, is called the Bézier polygon
(or control polygon).

The convex hull of the Bézier polygon contains the Bézier curve.

The start (end) of the curve is tangent to the first (last) section of
the Bézier polygon.
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the Bézier polygon.

D. Delahaye and S.Puechmorel and P.Tsiotras and E.Feron ( Applied Mathematics Laboratory (MAIAA) French Civil Aviation University Toulouse, France School of Aerospace Engineering Georgia Institute of Technology Atlanta, USA )Mathematical Models for Aircraft Trajectory Design : A Survey EIWAC 2013 TokyoFebruary, 21 2013 29 / 146
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Cubic Bézier curves

The explicit form of the curve is :

B(t) = (1− t)3~P0 + 3(1− t)2t~P1 + 3(1− t)t2~P2 + t3~P3 , t ∈ [0, 1].

B(t) =
n∑

i=0

bi ,n(t)~Pi , t ∈ [0, 1]

where the polynomials

bi ,n(t) =

(
n

i

)
t i (1− t)n−i , i = 0, . . . n

are known as Bernstein basis polynomials of degree n.

A Bézier curve defined with n + 1 control points is of degree n.

So if there are many points one has to manipulate polynoms with high
degree ⇒ Basis-Splines
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B-Splines

Powerful tool for generating curves with many control points, B stands for
basis.

A single B-spline can specify a long complicated curve

B-splines can be designed with sharp bends and even “corners”

B-Spline interpolation is preferred over polynomial interpolation
because the interpolation error can be made small even when using
low degree polynomials for the spline.

Spline interpolation avoids the problem of Runge’s phenomenon
which occurs when interpolating between equidistant points with high
degree polynomials.
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Uniform B-Splines of Degree Zero

We consider a node vector ~T = {t0, t1, ..., tn} with t0 ≤ t1 ≤, ...,≤ tn and
n points ~Pi .
One want to build a curve ~X0(t) such that

~X0(ti ) = ~Pi

⇒ ~X0(t) = ~Pi ∀t ∈ [ti , ti+1]

~X0(t) =
∑
i

Bi ,0(t).~Pi
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Uniform B-Splines of Degree Zero

it =4

t i+1t i

B    (t)
i,0

X   (t)
0

0 1 2 3 5 6 7 8

Pi

9

1
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Uniform B-Splines of Degree One

We are searching for a piecewise linear approximation :

~X1(t) =

(
1− t − ti

ti+1 − ti

)
~Pi−1 +

(
1− t − ti

ti+1 − ti

)
~Pi ∀t ∈ [ti , ti+1]

~X1(t) =
∑
i

Bi ,1(t).~Pi

it =4

t i+1t i

0 1 2 3 5 6 7 8

Pi

9

X   (t)
1

t i−1

i−1,1
B      (t)1
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Uniform B-Splines of Degree Three

Developped at Boeing in the 70s.

One of the simplest and most useful cases of B-splines

Degree 3 B-Spline with n + 1 control points :

~X3(t) =
n∑

i=0

Bi ,3(t).~Pi 3 ≤ t ≤ n + 1

For degree 3,
Bi ,3(t) = 0 if t ≤ ti or t ≥ ti+4 So

~X3(t) =

j∑
i=j−3

Bi ,3(t).~Pi t ∈ [j , j + 1], 3 ≤ j ≤ n

When a single control point Pi is moved, only the portion of the
curve ~X3(t) with ti < t < ti+4 is changed ⇒ local control.
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Uniform B-Splines of Degree Three

The basis functions have the following properties :

They are translates of each other i.e Bi ,3(t) = B0,3(t − i)

They are piecewise degree three polynomial

Partition of unity
∑

i Bi (t) = 1 for 3 ≤ t ≤ n + 1

The functions ~Xi (t) are of degree 3 for any set of control points
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Uniform B-Splines of Degree Three

Bi−2,3(t) =
1

h



(t − ti−2)3 if t ∈ [ti−2, ti−1]
h3 + 3h2(t − ti−1) + 3h(t − ti−1)2 − 3(t − ti−1)3

if t ∈ [ti−1, ti ]
h3 + 3h2(ti+1 − t) + 3h(ti+1 − t)2 − 3(ti+1 − t)3

if t ∈ [ti , ti+1]
(ti+2 − t)3 if t ∈ [ti+1, ti+2]
0 otherwise
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Uniform B-Splines of Degree Three

B    (t)
2,3 3,3

B    (t)B    (t)
1,3

1 2 3 54 6 7 8

B    (t)
4,3

2/3
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Homotopy Trajectory Design
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Homotopy Trajectory Design

If we consider two (or more) references trajectories (γ1(t), γ2(t))joining the
same origine destination pair (past flown trajectories may be considered),
one can create a new trajectory γ(α, t) by using an homotopy :

γ(α, t) =

{
γ(0, t) = γ1(t)
γ(1, t) = γ2(t)

γ(α, t) = (1− α)γ1(t) + αγ2(t)

γ
2

γ
1

γα

B

A
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Functionnal Principal Component Analysis
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Functionnal Principal Component Analysis

Used for Stochastic Signal Compression (movies, image, voice)

The goal of principal component analysis is to compute the most
meaninfugful basis to re-express a noisy data set (maximize
SNR,minimize redundancy).

If speed is suitable one must work in Sobolev space

Extraction of the Probability Density Function of PCA coefficients in
order to be able to randomly generate “flyable trajectories”.
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meaninfugful basis to re-express a noisy data set (maximize
SNR,minimize redundancy).

If speed is suitable one must work in Sobolev space

Extraction of the Probability Density Function of PCA coefficients in
order to be able to randomly generate “flyable trajectories”.
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Optimization Approach

All the previous representations may be used in the following process

Reconstruction

Trajectory

Trajectory

Evaluation

Optimization

γ

X (parameters) 

y=f(X)
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Trajectory Models

Aircraft Trajectory Features

Dimension Reduction Approaches

Front Propagation Approaches

Optimal Control Approaches
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Method

Propagating front methods : General principle

Methods introduced by J.A. Sethian.

Figure: Curve propagating with speed
F in normal direction.

Goal :

Track the motion of a front as it
evolves.

How ?

We caracterize the position of the
front by the computation of the
arrival time u(x , y) at each point
(x , y).

⇒ Map of isocost.
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Method

Propagating front methods

Fast Marching :

→ Isotropic problem
The speed of propagation F is the
same in any directions, it only de-
pends on the position.

Ordered Upwind :

→ Anisotropic problem
The speed of propagation depends
on position and direction of the
propagation.
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Method

Fast Marching Method

Statement of the problem in the case of optimal path planning :
(J.A. Sethian, 1998)

Let u(x) be the time where the front crosses the point x .

Computation of u → Solving the Eikonal equation :{
|∇u(x)|F (x) = 1 in Ω, F (x) > 0

Γ(u) = {x |u(x) = u0},

where x is the position and F is the propagation speed.

To plan the optimal path γ(t) (back traking) :

dγ(t)

dt
= − ∇u

||∇u||
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Method

Numerical solving : Godonov Scheme

The principal idea is to construct the solution using only upwind values. For this,
we divide all the mesh points in three sets :

Accepted : Set of points where the solution is known ;

Considered : Set of points which are adjacent to at least one Accepted
point ;

Far : Set of points where we do not have yet any information about the
solution.

Figure: Construction of the algorithm
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Method

Fast Marching Algorithm

Figure: Step 1 : Initialization
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Method

Fast Marching Algorithm

Figure: Step 2 : Transfering → Considered
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Method

Fast Marching Algorithm

Figure: Step 3 : Looking for the smallest value u(xi )
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Method

Fast Marching Algorithm

Figure: Step 4 : Transfering → Accepted
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Method

Fast Marching Algorithm

Figure: Step 5 : Transfering → Considered
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Method

Fast Marching Algorithm

Figure: Step 6 : Looking for the smallest value u(xi )
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Method

Fast Marching Algorithm

Figure: Step 7 : Transfering → Considered
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Method

Fast Marching Algorithm

Figure: Step 8 : Recomputing the value u(xi )
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Method

Fast Marching Algorithm

Figure: Step 8 : Recomputing the value u(xi )

D. Delahaye and S.Puechmorel and P.Tsiotras and E.Feron ( Applied Mathematics Laboratory (MAIAA) French Civil Aviation University Toulouse, France School of Aerospace Engineering Georgia Institute of Technology Atlanta, USA )Mathematical Models for Aircraft Trajectory Design : A Survey EIWAC 2013 TokyoFebruary, 21 2013 49 / 146



Method

Trajectory Models

Aircraft Trajectory Features

Dimension Reduction Approaches

Front Propagation Approaches

Optimal Control Approaches
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Method

Optimal Control for Trajectory Generation

Mainly used for time-parameterized of shapes.

Generating time-parameterized paths necessitates the incorporation of
the aircraft dynamics.

The objective of optimal control theory is to determine the control
input(s) that will cause a process to satisfy the physical constraints,
while, at the same time, minimize (or maximize) some performance
criterion.

Feasibility of the trajectories is automatically ensured using this
approach.
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Method

Optimal Control for Trajectory Generation

Given initial conditions x0, final conditions xf ∈ X , and an initial time
t0 ≥ 0, determine the final time tf > t0, the control input u(t) ∈ U and
the corresponding state history x(t) for t ∈ [t0, tf ] which minimize the
cost function

J(x , u) =
∫ tf
t0

L(x(t), u(t))dt,

where x(t) and u(t) satisfy, for all t ∈ [t0, tf ] the differential and
algebraic constraints. {

ẋ(t)− f (x(t), u(t)) = 0,
C (x(t), u(t)) ≤ 0.
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Method

Optimal Control for Trajectory Generation

Optimal control has its roots in the theory of calculus of variations,
which originated in the 17th century by Fermat, Newton, Liebniz,etc...

It was not until the middle of the 20th century when the Soviet
mathematician Pontryagin developed a complete theory that could
handle such problem.
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Method

Optimal Control for Trajectory Generation

Pontryagin’s celebrated Maximum Principle states that the optimal
control for the solution of the problem is given as the pointwise
minimum of the so-called Hamiltonian function, that is :

uopt = argminu∈UH(t, x , λ, u)

where H(t, x , λ, u) = L(x , u) + λT f (x , u) is the Hamiltonian, and λ
are the co-states, computed from

λ̇(t) = −∂H

∂x
(x(t), λ(t), u(t)). (1)

subject to certain boundary (transversality) conditions on λ(tf ).

Numerical solution
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Method

Agenda

Some Trajectory Models

Strategic Trajectory Design

Pre-Tactical Trajectory Design

Tactical Trajectory Design

Emergency Trajectory Design
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Strategic Planning

Continental Strategic Planning

Before take-off

Trajectory design for large segment (full trajectory)

Action on time and space

Large scale (30000-50000 aircraft)

Continental or Oceanic

Macroscopic congestion criterium

One must take into account uncertainties
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Strategic Planning

Uncertainties

t t + 10’ t + 20’

Trajectory prediction limitation Factors

1 Wind (~V = ~T + ~W )

2 Temperature, pressure (engine trust, drag d = 1
2 .cx .ρ.S .v

2)

3 Weight

On-board trajectory prediction

FMS in open loop : +−15Nm after one hour flight.
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Strategic Planning Continental Strategic Planing

How much can we reduce congestion in the French Airspace ?
Optimization Approach

EUROCONTROL
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Strategic Planning Continental Strategic Planing

How much can we reduce congestion in the French
Airspace ?

Approach based on optimization

What are our state space variables ?

2D Route + departure times (' 7000 flights).

What is our objective ?

Airspace congestion minimization

What are the constraints ?

Extra distance ≤ 10%

Time shift have to be limited (+− 45 minutes)

The optimization process has to take into account flight connexions
(hubs) and equity between airline.

D. Delahaye and S.Puechmorel and P.Tsiotras and E.Feron ( Applied Mathematics Laboratory (MAIAA) French Civil Aviation University Toulouse, France School of Aerospace Engineering Georgia Institute of Technology Atlanta, USA )Mathematical Models for Aircraft Trajectory Design : A Survey EIWAC 2013 TokyoFebruary, 21 2013 59 / 146



Strategic Planning Continental Strategic Planing

How much can we reduce congestion in the French
Airspace ?

Approach based on optimization

What are our state space variables ?

2D Route + departure times (' 7000 flights).

What is our objective ?

Airspace congestion minimization

What are the constraints ?

Extra distance ≤ 10%

Time shift have to be limited (+− 45 minutes)

The optimization process has to take into account flight connexions
(hubs) and equity between airline.

D. Delahaye and S.Puechmorel and P.Tsiotras and E.Feron ( Applied Mathematics Laboratory (MAIAA) French Civil Aviation University Toulouse, France School of Aerospace Engineering Georgia Institute of Technology Atlanta, USA )Mathematical Models for Aircraft Trajectory Design : A Survey EIWAC 2013 TokyoFebruary, 21 2013 59 / 146



Strategic Planning Continental Strategic Planing

How much can we reduce congestion in the French
Airspace ?

Approach based on optimization

What are our state space variables ?

2D Route + departure times (' 7000 flights).

What is our objective ?

Airspace congestion minimization

What are the constraints ?

Extra distance ≤ 10%

Time shift have to be limited (+− 45 minutes)

The optimization process has to take into account flight connexions
(hubs) and equity between airline.

D. Delahaye and S.Puechmorel and P.Tsiotras and E.Feron ( Applied Mathematics Laboratory (MAIAA) French Civil Aviation University Toulouse, France School of Aerospace Engineering Georgia Institute of Technology Atlanta, USA )Mathematical Models for Aircraft Trajectory Design : A Survey EIWAC 2013 TokyoFebruary, 21 2013 59 / 146



Strategic Planning Continental Strategic Planing

Mathematical Modeling

A pair of decision variable (δi , ri ) is associated with each flight n.

δi ∈ ∆n ri ∈ Rn

∆n = −δm,−δm + 1, ....,−1, 0, 1, ..., δp − 1, δp
Rn = r0, r1, r2, ..., rmax

(0, r0) : airline choice.

State point :

X =

[
δ1 δ2 ... δk ... δN
r1 r2 ... rk ... rN

]
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Strategic Planning Continental Strategic Planing

Objective function

Congestion Minimization

min y(X ) = min
k=P∑
k=1

(
(
∑
t∈T

W̃ t
Sk

)φ × (max
t∈T

W̃ t
Sk

)ϕ

)

maxt∈T W̃ t
Sk

: is the maximum reported congestion.∑
t∈T W̃ t

Sk
: is the sector cumulated congestion.

P is the number of elementary sectors, φ and ϕ are weight factors

max y1(X ) =
y(Xref )

y(X )

(y1 = 2 means that the congestion has been divided by 2)
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Strategic Planning Continental Strategic Planing

Simulation process

  

  

Initial 

Flight Plans Flight Plans

Alternative Airspace

Sectors

Traffic

    Simulator 

Sampled 

Trajectories

Genetic Algorithm

Best   

Planning

Proposed Planning 

Computation

Congestion
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Strategic Planning Continental Strategic Planing

Genetic Algorithm

Tournament
Selection

λ

µ

POP(k)

Crossover
Pc

Mutation
Pm1−(Pm+Pc)

POP(k+1)

Nothing
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Strategic Planning Continental Strategic Planing

A Posteriori information

W
B
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Sector congestion

Trend

Advance Delay
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Strategic Planning Continental Strategic Planing

State space

Congestion
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Strategic Planning Continental Strategic Planing

Test Features and Parameters

One day of traffic 6381 flights (june, 21 1996)

89 elementary sectors with dynamic capacity

Pop size : 50

Generation number : 300

φ = 0.9 and ϕ = 0.1

Max time shift : + or - 45 mn

Alternative route with 10% extradistance

6 computation hours on Pentium 1Ghz
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Strategic Planning Continental Strategic Planing

Evolution of best planning with generations

One day of traffic with ' 7000 flights optimized with GA
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Strategic Planning Continental Strategic Planing

Multi-objective extension

Delays and extra-distances minimization

Delay on the ground : δs(i) = |t(i)− t0(i)|
Delay on board : δr (i) = 3 ∗ (Tr (i)− Tr0(i))

Total delay : δ(i) = δs(i) + δr (i)

min y2 =
N∑
i=1

δ(i)2

(the square insure equity)

D. Delahaye and S.Puechmorel and P.Tsiotras and E.Feron ( Applied Mathematics Laboratory (MAIAA) French Civil Aviation University Toulouse, France School of Aerospace Engineering Georgia Institute of Technology Atlanta, USA )Mathematical Models for Aircraft Trajectory Design : A Survey EIWAC 2013 TokyoFebruary, 21 2013 68 / 146



Strategic Planning Continental Strategic Planing

Multi-objective extension
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Strategic Planning Strategic Conflict Free Planing

Strategic Conflict Free Planning
Optimization Approach

FP7 4D-CO project
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Strategic Planning Strategic Conflict Free Planing

Strategic Conflict Free Planning

Consider the traffic over Europe (' 36000 flights)

Picture of Europe Traffic for One Day
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Strategic Planning Strategic Conflict Free Planing

Strategic Conflict Free Planning

We propose to design a gate-to-gate conflict free planning by adding
waypoints and/or by shifting the time on departure.
Departure and arrival segments are added to En-Route segments.
Optimal altitude profiles have been used.
Time shift : +- 30 minutes.
Waypoint constraints : max 10% extra distance

L/3	   2L/3	  
L	  

D	  O	  

a	  

y	  

x	  

-‐a	  

0	  
wx1,min	   wx1,max	   wx2,min	   wx2,max	  

wy1,max	   wy2,max	  

wy1,min	   wy2,min	  
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Strategic Planning Strategic Conflict Free Planing

Strategic Conflict Free Planning

Direct route planning induces ' 400000 interactions between trajectoires.
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Strategic Planning Strategic Conflict Free Planing

Strategic Conflict Free Planning

This problem is NP Hard
One point of the state space requests 2GO memory space.

⇒ Simulated Annealing (20 minutes computing 2.4 Ghz intel CPU)
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Strategic Planning Strategic Conflict Free Planing

Strategic Conflict Free Planning
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Strategic Planning Oceanic Strategic Planning

Oceanic Strategic Planning
Optimization Approach

ENAC
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Strategic Planning Oceanic Strategic Planning

Oceanic Strategic Planning

Continental Airspace ⇒ Radar

Oceanic Airspace ⇒ Procedures based on oceanic tracks network
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Strategic Planning Oceanic Strategic Planning

How It Works Today ?
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Strategic Planning Oceanic Strategic Planning

Oceanic Network Structure

Ny

Nx1
1
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Strategic Planning Oceanic Strategic Planning

Network Limitation

Congestion Area
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Strategic Planning Oceanic Strategic Planning

Time Constraint for Oceanic Traffic

10 minutes

15 minutes 15 minutes
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Strategic Planning Oceanic Strategic Planning

Automatic Dependent Surveillance-Broadcast

One measure every second
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Strategic Planning Oceanic Strategic Planning

Time Constraint with ADSB

 3 minutes 3 minutes

2 minutes

This new system increases the number of valid track changes and the
maximum number of aircraft on the same track (wind optimal).
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Strategic Planning Oceanic Strategic Planning

The model

Data : For each flight f ∈ F we know

Track f
in the entry track

Track f
out the exit track

t fin time of entrance in the track
FLf

in the input flight level
FLf

out the output flight level

Variables

x f
i =

{
1 if flight f changes track at waypoint i
0 otherwise

δf : time shift at track entry : t fin + δf
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Strategic Planning Oceanic Strategic Planning

Altitude Profiles
U

S
A

E
U

R
O

P
E

Altitude profiles will be considered as constraints.
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Strategic Planning Oceanic Strategic Planning

The model

Constraints
NX−1∑
i=1

x f
i = |Track f

out − Track f
in|

z f
i =

{
1 if flight f changes flight level at waypoint i
0 otherwise

NX−1∑
i=1

z f
i = |FLf

out − FLf
in|

Objective function
Number of conflicts on nodes (Cfn) and links (Cfl).
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Strategic Planning Oceanic Strategic Planning

Induced Combinatorics

For each flight f we have the following

1 about 6 possible slots per flight.

2 an average of 4 track changes which have to be spread among the 10
waypoint positions (= 210 options per flight)

3 the total number of options is about 1260.

For 500 flights we have 1260500 options.

No separability ⇒ Heuristic approach (EA)
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Strategic Planning Oceanic Strategic Planning

Coding

=d i

d id 1 d N

01 0 1 10 100δ t Ci

Level of congestion encountered by flight i

N number of aircraft 
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Strategic Planning Oceanic Strategic Planning

Slicing Crossover

CROSSOVER
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Strategic Planning Oceanic Strategic Planning

Slicing Crossover

PARENT 1

SLICING 

CROSSOVER

CHILD 1 CHILD 2

PARENT 2

D. Delahaye and S.Puechmorel and P.Tsiotras and E.Feron ( Applied Mathematics Laboratory (MAIAA) French Civil Aviation University Toulouse, France School of Aerospace Engineering Georgia Institute of Technology Atlanta, USA )Mathematical Models for Aircraft Trajectory Design : A Survey EIWAC 2013 TokyoFebruary, 21 2013 90 / 146



Strategic Planning Oceanic Strategic Planning

Mutation

01 0 10 10δ t Ci0 1

00 0 10 11δ t Ci0 1
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Strategic Planning Oceanic Strategic Planning

Fitness Computation

Each aircraft trajectory is computed on the track network based on ;

Altitude profile

Aircraft speed

Track changes decision variables

Time delay at network entry (Max +/- 6x5=30 minutes)

Based on such simulation, we compute the conflicts on nodes (Cfn) and on
links (Cfl).

fitness =
1

0.01 + Cfn
+

1

0.01 + Cfl
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Strategic Planning Oceanic Strategic Planning

Test Framework

387 aircraft trajectories from August 4th 2006 (USA → Europe
traffic)

Evolutionary Algorithm parameters
Pop size 500

Genration number 1000
Selection (λ = 6,µ = 2)

Proba Cross 0.5
Proba Mut 0.1
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Strategic Planning Oceanic Strategic Planning

Results for Standard System
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Remaining conflicts on nodes : 609 (initially 1515)
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Strategic Planning Oceanic Strategic Planning

Results with ADSB Equiped Aircraft
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All conflict have been removed
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Strategic Planning Oceanic Strategic Planning

Agenda

Some Trajectory Models

Strategic Trajectory Design

Pre-Tactical Trajectory Design

Tactical Trajectory Design

Emergency Trajectory Design
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Pre-Tactical Planning

Pre-Tactical Planning

After take-off (1, 2 hours planning)

Features

2D route design and speed control (state space)

Congestion or weather areas avoidance (objective)
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Pre-Tactical Planning Trajectory Design in a Wind Field

Wind Optimal Trajectory Design
Front Propagation Approach

Cap Gemini
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Pre-Tactical Planning Trajectory Design in a Wind Field

What are our objectives ?

Currently

Using predefined air routes.

⇒ Proposed approach : Wind optimal route design.

⇒ New problem :

Optimization of aircraft trajectories based on weather conditions (wind)
which avoid congestion areas (or bad weather phenomena, etc ...)

The optimization is based on Travel Time and (or) Fuel Consumption.
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Pre-Tactical Planning Trajectory Design in a Wind Field

Statement of problem

Inputs

Start point A,
End point B ;

Constant aircraft speed ;

Wind forecast ;

Areas to avoid.

⇒ Goal : Connect the point A to the point B in order to minimize the
travel time.
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Pre-Tactical Planning Trajectory Design in a Wind Field

Adaptation of the Fast Marching Method

Figure: Speed

−−→
VGS =

−−−→
VTAS +

−−→
VW

with :

VTAS (True Airspeed) : speed of the
aircraft relative to the airmass in
which it is flying ;

VW (Wind Speed) ;

VGS (Ground Speed).

⇒ The aircraft ground speed is function of the direction !
⇒ Anisotropic problem.
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Pre-Tactical Planning Trajectory Design in a Wind Field

Calculation of the speed function : F = ||
−→
F ||

Calculation of the aircraft
speed in the normal
direction.
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Pre-Tactical Planning Trajectory Design in a Wind Field

Calculation of the speed function : F = ||
−→
F ||

Calculation of the aircraft
speed in the normal
direction.

Calculation of the cost u :

‖∇u‖ =
1

||
−→
F ||
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Pre-Tactical Planning Trajectory Design in a Wind Field

Calculation of the speed function : F = ||
−→
F ||

Calculation of the aircraft
speed in the normal
direction.

Calculation of the cost u :

‖∇u‖ =
1

||
−→
F ||

To plan the optimal path :

dX

dt
= −
−−→
VW − VTAS

∇u

||∇u||
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Pre-Tactical Planning Trajectory Design in a Wind Field

Taking into account obstacles and weather conditions

‖∇u(x)‖ =
1

F (x)

⇒ Change of the propagation speed according to obstacles :

‖∇u(x)‖ =
1

((1− α(x))F (x))

with α(x) ∈ [0;α0] and 0 6 α0 < 1.

Interpretation :

α(x) = α0 : forbidden areas
α(x) = 0 : free areas
0 ≤ α(x) ≤ α0 penalized areas
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Pre-Tactical Planning Trajectory Design in a Wind Field

Example with obstacles

Figure: Obstacles (Forbidden areas then coefficient decreasing to 0.)
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Pre-Tactical Planning Trajectory Design in a Wind Field

Example with obstacles

Figure: Optimal trajectory (green) without wind
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Pre-Tactical Planning Trajectory Design in a Wind Field

Example with obstacles

Figure: Wind
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Pre-Tactical Planning Trajectory Design in a Wind Field

Example with obstacles

Figure: Optimal trajectories : with wind and without wind.
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Pre-Tactical Planning Light Propagation Algorithm

Wave Propagation Algorithm for Trajectory Design

Aircraft Trajectory Design in a Wind Field

Light Propagation Algorithm AIRBUS FMS Division
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Pre-Tactical Planning Light Propagation Algorithm

The light propagation method

The light propagation analogy

Light follows Geodesic in time thereby avoiding areas of high index.

Light propagation is controlled by the Descarte law.

Trajectory planning can be achieved by computing wavefronts.
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Pre-Tactical Planning Light Propagation Algorithm

Principles of the light propagation method

Destination

Curent node

Origine

Geodesic computation (A∗ like algorithm or Triangle mesh algorithm)
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Experimental results 2D

Experimental results
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Experimental results 2D

Agenda

Some Trajectory Models

Strategic Trajectory Design

Pre-Tactical Trajectory Design

Tactical Trajectory Design

Emergency Trajectory Design
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Tactical Planning

Tactical Planning

After take-off (horizon : 20 minutes))

Features

2D Route design (state space)

Collision avoidance (objective)

One must bring a proof for such algorithms
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Tactical Planning

Tactical Trajectory Design

Time extension of light Propagation Algorithm

Approach based on B-Splines

Approach based biharmonic navigation functions
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Tactical Planning Light Propagation Algorithm

Approach Based on LPA

Time extension for dynamic obstacles

s
ts

d

td

ts’

td’

s’

d’

Obstacle

Time

Space X

Space Y

Light has to propagate one way in time dimension
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Tactical Planning 2D+Time

Experimental results

A 2D + time algorithm version

The algorithm sequentially control conflicting aircraft.

The aircraft are represented by high index discs of radius the standard
separation.
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Tactical Planning 2D+Time

7 Conflicting Aircraft
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Tactical Planning Traffic day

Conflict Resolution for a traffic day

How does it work ?

We compute aircraft trajectories for a day of traffic over France.
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Tactical Planning Traffic day

Conflict Resolution for a traffic day

How does it work ?

We extract trajectories segments between t et t + 21 min.
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Tactical Planning Traffic day

Conflict Resolution for a traffic day

How does it work ?

We identify clusters of conflict.
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Tactical Planning Traffic day

Conflict Resolution for a traffic day

How does it work ?

We solve conflicts within each cluster using the light propagation
algorithm.

Modified trajectory segments
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Tactical Planning Traffic day

Conflict Resolution for a traffic day

How does it work ?

We reintroduce the new segments in the database and we recompute the
remaining parts of trajectories.
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Tactical Planning Traffic day

Conflict Resolution for a traffic day

How does it work ?

The time window is slid by 7 min. t ← t + 7.

Fraction of time window already flown by aircraft

Segment extracted in the next time window
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Tactical Planning Traffic day

Conflict Resolution for a full day of traffic

Numerical Results

The 8/12/2008 traffic day was tested with 8212 aircraft.

3344 clusters.

99% of clusters were resolved (the last % is due to aircraft already in
conflict when algorithm starts ; could be solve initial time shifting

Number of modified trajectories is 1501.

Average extension distance= -4.41 Nm.
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Tactical Planning Traffic day

Stochastic Extension

Open loop FMS error has been used for our simulation (+-15 Nm after 1
Hour)

This algorithm has been extended with such uncertainties and is able
to manage 98% of the conflicts.

The remaining 2% have been solve by RTA setting (closed FMS
mode).
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Tactical Planning Traffic day

Tactical Trajectory Design

Time extension of light Propagation Algorithm

Approach based on B-SplinesCap Gemini

Approach based on biharmonic navigation functions
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Tactical Planning B-Spline Approach

Problem presentation

Our methodology

A combination of an optimization method and a smooth trajectory
model : B-splines.

B-splines are controlled by the optimization method via their
control points
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Tactical Planning B-Spline Approach

Genetic Algorithm

Structure
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Tactical Planning B-Spline Approach

Trajectory model
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Tactical Planning B-Spline Approach

Semi-infinite programming formulation

min
x

f (x)

s.t. g(x ; t) > α ∀t ∈ [t1, t2] (2)

where t is continuous, it is the semi-infinite parameter.
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Tactical Planning B-Spline Approach

Semi-infinite programming formulation

Our objective function : relative distance increase.

Insure standard separation between each pair of aircraft at all time

c ij(u; t) = ‖γβi (u)(s(t))− γβj (u)(s(t))‖2 > τ ∀t ∈ [0, t ijmax ]

SIP is a local optimization method
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Tactical Planning B-Spline Approach

Results and comparison

32 aircrafts situation

Genetic Algorithm Semi-infinite programming.

Next : use GA to initialize control points for SIP
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Tactical Planning Bi-harmanic Approach

Tactical Trajectory Design

Time extension of light Propagation Algorithm

Approach based on B-Splines

Approach based on biharmonic navigation functionsCap Gemini
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Tactical Planning Bi-harmanic Approach

Collision-free trajectory planning using biharmonic
navigation functions

Objective

Create trajectories guaranteeing obstacle avoidance and enforcing
ATM constraints for several aircraft.

Constraints

1 Speed has to stay in a given range

2 Trajectories have be smooth
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Tactical Planning Bi-harmanic Approach

Navigation Function

Potential Field Analogy in order to compute the navigation function φ.
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Tactical Planning Bi-harmanic Approach

Navigation function and navigation field

The navigation field is given by : −∇φ

Figure: Example of navigation field

With these navigation fields, we can be sure that :

any trajectory stays in the free space

any trajectory reaching the minimum stays at this minimum

There is no guarantee on the speed and trajectories may not be smooth ⇒
Bi-Harmonic Functions.
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With these navigation fields, we can be sure that :

any trajectory stays in the free space

any trajectory reaching the minimum stays at this minimum

There is no guarantee on the speed and trajectories may not be smooth ⇒
Bi-Harmonic Functions.

D. Delahaye and S.Puechmorel and P.Tsiotras and E.Feron ( Applied Mathematics Laboratory (MAIAA) French Civil Aviation University Toulouse, France School of Aerospace Engineering Georgia Institute of Technology Atlanta, USA )Mathematical Models for Aircraft Trajectory Design : A Survey EIWAC 2013 TokyoFebruary, 21 2013 129 / 146



Biharmonic functions Theory

Mechanical stress field

Figure: The mechanical stress field
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Mechanical stress field

Figure: The mechanical stress field
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Biharmonic functions Theory

Mechanical stress field

Figure: Stresses representation
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Biharmonic functions Theory

Biharmonic functions : guideline

Solve 42F = 0 + boundary conditions

Compute the stresses by :

σxx = ∂2
yyF (x , y) σyy = ∂2

xxF (x , y) σxy = −∂2
xyF (x , y)

⇒ Tensor field

Compute the principal stresses(= eigenvalues)[
σxx σxy
σxy σyy

]
⇒
[
σmin 0

0 σmax

]
Compute the eigenvectors corresponding to σmin

⇒ Navigation field
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Biharmonic functions Theory

Fields with obstacle

Figure: With one obstacle
Figure: For a more complex geometry
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Biharmonic functions Theory

Conclusions

Biharmonic Navigation Functions

Ensure conflict free trajectory design

With mathematical proof

With speed range constraint

With curvature constraint

May be used in tactical phase

Have to be extended to the stochastic framework ⇒ Stochastic
Biharmonic Functions
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Biharmonic functions Theory

Agenda

Some Trajectory Models

Strategic Trajectory Design

Pre-Tactical Trajectory Design

Tactical Trajectory Design

Emergency Trajectory Design
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Biharmonic functions Theory

On-Board A/C Optimal Trajectory Generation

Over 70% of fatal aviation accidents are in take-off/landing phases.

Cockpit emergency handling from crew can result in completely
different outcomes : Swissair Flight 111, US Airways Flight 1549

Landing in mountainous terrain (e.g., LinZhi airport in China),
avoiding inclement weather, or other aircraft in the area requires
reliable obstacle avoidance.
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Biharmonic functions Theory

Aircraft Emergency Landing

Time is the most critical factor

Swissair flight 111 : 14min
US Airways flight 1549 : 3min

Fuel may be a limiting factor too

Challenges

Real-Time requirement

Convergence guarantees
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Biharmonic functions Theory

An Alternative

Use a hierarchical approach

Geometric planner

- State constraints, obstacles
- Path generator

Motion planner

- Time parameterization
- Trajectory generator

Key Idea : First find flyable path to avoid obstacles ; then find a
feasible trajectory to follow along this path.

Requires the solution of optimal time parameterization (or
velocity generation) problem.

The latter is a one-dimensional optimal control problem that can be
solved very efficiently !
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Biharmonic functions Theory

On-Line Optimal Trajectory Generation Schematic
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Biharmonic functions Theory

Initial Path Guess

Use Dubins paths with continuous descent
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Biharmonic functions Theory

Application to Real Test Cases

Swissair 111

US Air 1549

D. Delahaye and S.Puechmorel and P.Tsiotras and E.Feron ( Applied Mathematics Laboratory (MAIAA) French Civil Aviation University Toulouse, France School of Aerospace Engineering Georgia Institute of Technology Atlanta, USA )Mathematical Models for Aircraft Trajectory Design : A Survey EIWAC 2013 TokyoFebruary, 21 2013 140 / 146



Biharmonic functions Theory

Test Case 1 : Swissair 111

Swissair 111 (McDonnell Douglas MD-11) from JFK (NY) to Geneva
(Switzerland).

On Wednesday, 2 September 1998, the aircraft crashed into the
Atlantic Ocean southwest of Halifax International Airport (due to fire
on Board).
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Test Case 1 : Swissair 111
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Test Case 1 : Swissair 111
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Biharmonic functions Theory

Test Case 2 : US Air 1549

VIDEO !
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Test Case 2 : US Air 1549
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Biharmonic functions Theory

QUESTIONS ?
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