

Automated Separation Assurance with Weather and Uncertainty

Todd Lauderdale and Heinz Erzberger
NASA Ames Research Center

Automated Separation Assurance

Take Away

- A long-term research focus guided us towards:
 - Automated weather avoidance
 - Robust handling of trajectory prediction errors
- This provided us with near-term benefits

Outline

- Algorithm background
- Trial planning
- Weather avoidance
- Handling trajectory prediction errors

A Layered Approach to Separation Assurance

Advanced Airspace Concept

Advanced Airspace Concept Autoresolver

Integrated Solutions

Conflicts

Arrival Merging and Spacing

Weather Avoidance

A loss of separation is predicted

Use simplified calculations to generate a maneuver

Use independent trajectory prediction system to create high-fidelity trajectory

Determine properties of trajectory including conflict-free status

Iterate to find preferred successful resolution

Trial Planning Summary

- Separate process of generating resolution maneuvers and predicting the results
- Resolutions are selected based on best available information
- Can leverage improved predictions immediately to improve performance

Complex Weather

Weather Avoidance Algorithm

- Assumptions
 - At most two auxiliary waypoints
 - Create only horizontal resolutions
 - Attempt to minimize deviations
- Use geometric algorithm instead of gridded search algorithm

Finding Tangencies

New Outbound Conflict

New Outbound Conflict

New Outbound Conflict

New Inbound Conflict

New Inbound Conflict

New Inbound Conflict

Iterate waypoint location up to 50 nmi

Select shortest conflict-free path

Discover Other Routes

Handling Weather Uncertainty

Handling Weather Uncertainty

Handling Weather Uncertainty

Handling Weather Uncertainty

Prototype Development

- Airspace Concept Evaluation System (ACES) simulation used as development platform
- Used Convective Weather Avoidance Model (CWAM) polygons derived from weather radar
- Used in operational trials as part of the Dynamic Weather Routes trial with American Airlines

Simulation Example

Simulation Example

Weather Algorithm Summary

- Simple geometric algorithm
- Uses constraints inherent to airspace operations to restrict the solution space
- Provides geometrically reasonable resolutions
- Proving effective in field study

Trajectory Prediction Errors

Impact of Different Error Types

[Lauderdale et. al. ATM 2011]

Methods to Increase Robustness

 Increase vertical separation requirements around Top of Descent

Use probabilistic conflict detection

Vertical Buffers

Vertical Buffers

Impact of Vertical Buffers

Prediction Error Summary

- Robustness to prediction errors is necessary
- Have shown that top-of-descent errors have large impact
- Simple, target buffers can be used to mitigate this impact
- Other methods to efficiently handle errors are being studied

Final Thoughts

- Long-term research focus can lead to nearterm benefits
- Trail planning effectively separates resolution generation and trajectory prediction
- Geometric weather avoidance is effective for ATM applications
- Trajectory prediction errors must be handled efficiently, especially for arrival aircraft