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Automated Separation Assurance




Take Away

* Along-term research focus guided us towards:

— Automated weather avoidance
— Robust handling of trajectory prediction errors

* This provided us with near-term benefits
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A Layered Approach to
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Advanced Airspace Concept
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Integrated Solutions
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Trial Planning
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Trial Planning
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Use simplified calculations to generate
a maneuver




Trial Planning
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Use independent trajectory prediction system
to create high-fidelity trajectory



Trial Planning
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Determine properties of trajectory including
conflict-free status



Trial Planning
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Trial Planning Summary

e Separate process of generating resolution
maneuvers and predicting the results

e Resolutions are selected based on best
available information

* Can leverage improved predictions
immediately to improve performance



Complex Weather



Weather Avoidance Algorithm

* Assumptions

— At most two auxiliary waypoints
— Create only horizontal resolutions
— Attempt to minimize deviations

* Use geometric algorithm instead of gridded
search algorithm



Finding Tangencies




Simple Example

Original path
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Simple Example
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New Outbound Conflict




New Outbound Conflict

Tangent to Cell 1
creates secondary
conflict with Cell 1a




New Outbound Conflict

Conflict-free

tangent line
8 Cell 1a becomes the
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New Inbound Conflict




New Inbound Conflict

Tangent line
between cells

Return path has
conflict with Cell 2



New Inbound Conflict
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New Middle Segment Conflict




New Middle Segment Conflict

Extend each
tangent

Tangent path
has conflict with
Cell 3



New Middle Segment Conflict

Find line tangent

Choose waypoint to weather
location along line
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New Middle Segment Conflict

lterate waypoint
location up to 50 nmi




New Middle Segment Conflict

Select shortest
conflict-free path
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Discover Other Routes



Handling Weather Uncertainty




Handling Weather Uncertainty
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Handling Weather Uncertainty

Buffer creates
conflict with
new cell




Handling Weather Uncertainty
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Prototype Development

* Airspace Concept Evaluation System (ACES)
simulation used as development platform

e Used Convective Weather Avoidance Model
(CWAM) polygons derived from weather radar

* Used in operational trials as part of the

Dynamic Weather Routes trial with American
Airlines
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Simulation Example
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Weather Algorithm Summary

Simple geometric algorithm

Uses constraints inherent to airspace
operations to restrict the solution space

Provides geometrically reasonable resolutions

Proving effective in field study



Trajectory Prediction Errors
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Impact of Different Error Types

Losses
of
Separation

Wind Cruise Weight Top of Descent Maneuver
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[Lauderdale et. al. ATM 2011]



Methods to Increase Robustness

* Increase vertical separation requirements
around Top of Descent
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* Use probabilistic conflict detection
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Vertical Buffers
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Vertical Buffers
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Impact of Vertical Buffers
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[Cone, A. and Lauderdale, T. ATIO 2012]



Prediction Error Summary

Robustness to prediction errors is hecessary

Have shown that top-of-descent errors have
arge impact

Simple, target buffers can be used to mitigate
this impact

Other methods to efficiently handle errors are
being studied



Final Thoughts

Long-term research focus can lead to near-
term benefits

Trail planning effectively separates resolution
generation and trajectory prediction

Geometric weather avoidance is effective for
ATM applications

Trajectory prediction errors must be handled
efficiently, especially for arrival aircraft



