Statistical characteristics of background ionospheric total electron content (TEC) in Bangkok, Thailand

P. Supnithi¹, S. Rungraengwajiake¹, S. Saito²,
 N. Siansawasdi³, A. Saekow⁴

¹Faculty of Engineering, King Mongkut's Institute of Technology Ladkrabang (KMITL), Thailand ²Electronic Navigation Research Institute (ENRI), Japan ³Aeronautical Radio of Thailand (AEROTHAI), Thailand ⁴Stamford International University, Thailand

Outline

Introduction

- Ionospheric effects on GNSS and GBAS
- Receiver bias computation
- Results and Discussions
- Conclusions

Ionospheric effects on GNSS signals

•

• The extra time delay produced by the ionosphere is given by,

$$\delta t = t_{s*} - t_s = \frac{40.3}{cf^2} \int_{s*} N_e ds \quad (\text{second})$$
Ionospheric delay
$$I = c \times \delta t = \frac{40.3}{f^2} TEC \quad (\text{meter})$$

- t_{s*} : Traveling time with an ionosphere
- t_s: Traveling time without an ionosphere

The refractive index of the radio wave in the ionosphere can estimate by using Appleton-Hartree equation (Kintner, 2005) :

• Since the plasma frequency is less than the radio wave frequency (GPS L1 signal is 1.5 GHz).

EIWAC 2013 THE THIRD ENRI INTERNATIONAL WORKSHOP ON ATM/CNS ~DRAFTING FUTURE SKY~ **Ionospheric effects on GNSS signals Scintillation** PRN03 QN0 Ionosphere , Time (min) KMITL 80 Amplitude and 60 **Phase fluctuation** 40 20

- The ionospheric irregularities cause the fluctuations in the refractive index (n).
- It causes the rapid fluctuations in amplitude and phase of GPS signals.
- In the worst case, the receiver loss of lock the satellite signal.

Scintillations – 22 March 2012

[The raw GPS satellite signal from the software receiver is provided with the courtesy of JAXA (Dr. Toshiaki Tsujii)]

Ionospheric Effects to GBAS

Simplified ionosphere wave front model

Ionospheric delay gradients

- 1. Delay gradients with ionospheric disturbance
- 2. Background delay gradients (quiet time)

In this study, we focus on the background ionospheric delay gradient (quiet-time). The approach is to use the 'minimum variance' method

Previous works

- [Fujita et al., 2010] uses 'single difference method' together with Kalman filter to determine integer ambiguities and then compute the ionospheric delays. The TEC levels at each station is not computed.
- [J. Lee et al., 2010] suggests using Maruyama's method in the long-term ionospheric monitoring as a simpler way to estmate the receiver bias in "Simple Truth" solutions.

S.Fujita, T. Yoshihara, S. Saito, "Determination of Ionosphere Gradient in Short Baselines by Using Single Frequency Measurements," Journal of Aeronautics, Astronautics and Aviation, Series A, vol. 42, no. 4, pp. 269 – 276 (2010),

J.Lee, S.Jung, E.Bang and S.Pullen, "Long Term Monitoring of Ionospheric Anomalies to Support the Local Area Augmentation System ," ION GNSS 2010, Sept. 20-24, Oregon, USA.

Objectives

- Preliminary study of the background delay gradient near Suvarnabhumi airport, Thailand
- To estimate the receiver bias using the minimum variance method in [Ma and Maruyama, 2003]

Short baseline experiments

Three dual-frequency GPS receivers have been installed as part of a cooperation project of

- 1. King Mongkut's Institute of Technology Ladkrabang (KMITL)
- 2. Electronic Navigation Research Institute (ENRI), Japan
- 3. Aeronautical Radio of Thailand Ltd. (AEROTHAI)
- 4. Stamford International University

Causes of Delay Gradients

Low and Equatorial Latitudes

- Equatorial Ionospheric Anomaly (EIA) : Large-scale ionospheric density enhancement around ±15° magnetic latitude
- Plasma Bubble: area of depletion of TEC at night time, typically generated from the equator due to pre-reversal enhancement

GPS Satellites

Slant TEC

- Since the STEC_P is nosier than STEC_L but the STEC_L still has an initial ambiguity which frequently lead the STEC_L to negative value.
- Generally, STEC_L is adjusted to STEC_P level.

$$STEC_{adj} = STEC + B_{S} + B_{R}$$
Satellite Receiver
IFB IFB

• For dual-frequencies GPS receiver, the Slant TEC can be derived by both psedorange and carrier phase linear combinations.

Pseudorange : $STEC_P = k(P_2 - P_1)$

Carrier phase :

 $STEC_{1} = k(L_{1} - L_{2})$

where k=9.5196 for TEC expressed in TECU.

Satellite and receiver biases

ObservedAbsoluteSatellitesReceiverValueValueBiasBias

 $STEC_1 = STEC + B_S + B_R$

The satellite biases obtained from IGS, determined by CODE (Center for Orbit Determination in Europe)

 $STEC_2 = STEC + B_R$

[Ma and T. Maruyama, 2003]

- The VTEC computed from low elevation angle data should not be different from VTEC compute from high elevation angle data.

- The expected receiver bias that gives the minimum $\ \sigma$ of VTEC is the corrected receiver bias

Receiver Bias

August, 2011

10	$- \Theta = Br_{STFD}$	DOY	Br_stfd	Br_kmit	Br_aero
	Br _{KMIT}	219	-31.14	-38.28	-30.25
-15 -		220	-23.17	-28.1	-21.13
		224	-22.86	-30.37	-22.79
		225	-23.69	-28.99	-19.23
-20 -		226	-22.00	-29.24	-20.96
LECL		227	-20.92	-27.8	-18.86
с Ш25 –		228	-19.86	-25.50	-18.46
iver I		229	-19.94	-27.32	-18.85
Rece		230	-25.58	-33.17	-24.22
-30 -		231	-16.55	-21.34	-13.11
	\circ	233	-21.24	-28.01	-19.53
	\bullet	235	-18.71	-21.70	-18.97
-35 -		237	-15.12	-18.83	-14.75
		240	-18.09	-20.75	-17.28
10		241	-19.13	-20.64	-16.59
215	217 219 221 223 225 227 229 231 233 235 237 239 241 243 245 DOY (Day of the year)				

A jump in the receiver bias is partially due to omission of some satellite data with remaining cycle slips after the cycle slip correction. ¹⁴

STEC and VTEC (Day 224)

STEC and VTEC (Day 233)

STEC and VTEC (Day 241)

Delay Gradients

d = distance between the IPPs

Ionospheric Delay Gradient (Day 233)

Ionospheric Delay Gradient (Day 241)

[Fujita et al., 2011]

During quiet time, the TEC gradient is computed with the mean around 0 mm/km.

Discussions

The leveling errors from the standard leveling technique can drastically reduced by the "integer leveling" whereby the integer ambiguities are obtained through PPP processing and introduced to the geometric-free equation

S. Banville et al., "Ionospheric Monitoring Using Integer-Levelled Observations," ION GNSS 2012, Tennessee, USA, 17-21 Sept, 2012.

Short baseline experiments

Future

- Courtesy of JAXA receiver

- CUSV (IGS)

Three dual-frequency GPS receivers have been installed as part of a cooperation project of

- 1. King Mongkut's Institute of Technology Ladkrabang (KMITL)
- 2. Electronic Navigation Research Institute (ENRI), Japan
- 3. Aeronautical Radio of Thailand Ltd. (AEROTHAI)
- 4. Stamford International University

Conclusions

- The preliminary results show that using Minimum variance method, which is suitable for a few single stations, the background ionospheric delay gradient is within +,- 50 mm/km for STFD-KMIT baseline, but have higher values for the KMIT-AERO baseline.
- The use of minimum variance method will need to be further modified to account for the integer ambiguities.

 $\begin{array}{c} EIWAC\ 2013 \\ \\ \mbox{The Third ENRI International Workshop on ATM/CNS} \\ \sim \mbox{Drafting future sky} \\ \end{array}$

Thank you for your attention Q&A