New issues raised on collision avoidance by the introduction of remotely piloted aircraft (RPA) in the ATM system

Jean-Marc Loscos

DSNA expert on collision avoidance and airborne surveillance

ElWAC 2013 – Tokyo 19-21 February 2013

dgac

de l'Écologie.

du Développement durable et de l'Énergie

Contents

Ministère de l'Écologie

durable

du Développement

t de l'Énergie

dgac

DSNA

- Challenges of introducing RPA in civil airspace
- Collision avoidance in ICAO concept of operations
- Lessons learnt from ACAS standardisation
- Latest developments on ACAS II
- Requirements applicable to RPA
- European work on RPA D&A= MIDCAS
- US work on RPA D&A= ACAS Xu
- Conclusions and future work

2

Challenges of introducing RPAs in civil airspace

- Integration of unmanned aircraft into the airspace will require detect and avoid capability with proven level of safety
- "Future collision avoidance must safely support and integrate new surveillance, users, and reduced separation procedures with minimal nuisance alerts"
- Outcome of ANCONF/12: (2012 Rec.4/6) "ICAO should as a matter of urgency, develop the necessary regulatory framework in its entirety to support the integration of remotely piloted aircraft into non-segregated airspace and at aerodromes including and clearly showing the scope of such regulation"

Ministère de l'Écologie, du Développement durable et de l'Énergie

Collision avoidance in ICAO operational concept (ANCONF/11 report, Dec 2003)

Conflict Management

- The ATM system will minimize restrictions to user operations
- The role of separator may be delegated
- The ATM system will respect the different nature of the three layers of conflict management identified in the operational concept
 - strategic conflict management, (e.g. airspace design, flight plan)
 - tactical conflict management (e.g., ATC instruction) and
 - collision avoidance (visual acquisition, ACAS, detect & avoid)
- Collision avoidance systems are part of ATM system safety management, but not used in calculating safety levels

durable et de l'Énergie

du Développement

dgac

Application to RPAs for detect & avoid (DAA)

Introduction of the traffic avoidance to support airborne separation

 Need to ensure there are no common points of failure between collision avoidance and traffic avoidance

té · Égalité · Fraternit

Ministère de l'Écologie,

durable

et de l'Énergie

Lessons learnt from ACAS standardisation

- ACAS design includes the Traffic Advisory (TA) to support visual acquisition and the Resolution Advisory (RA) for collision avoidance.
 - → For RPA where visual acquisition by the remote operator is not required, a new logic must be designed and the need for TA before RA can be revisited.
- ACAS II performance is affected by pilot behavior: automatic following of ACAS RA by connecting autopilot to ACAS showed significant safety and operational benefits (SESAR results reported at ICAO and ANCONF/12-IP14)
 → For RPA where the latency of the C2 link can be an issue, automatic following of evasive maneuvers is recommended.
- ACAS II is not suitable for all aircraft. Similarly, not all RPAs would be required to carry a detect and avoid function.

Ministère de l'Écologie, du Développement durable et de l'Énergie

dgac

Latest developments on ACAS II (a.k.a v7.1) (source ICAO ANCONF12 IP14 and B0-101)

- ACAS v7.1 includes logic enhancements for reversal situations and level-off encounters bringing significant safety and operational benefits.
- ACAS v7.1 is mandatory for MTOW>5.7t from 2014 (forward fit) to 2017 (retrofit)
- Optional features provide for connection to the autopilot which enable:

- automatic following of resolution advisories (RAs) with significant safety benefits. *NOTE: this is certified by EASA on AIRBUS A380 and on EUROCOPTER SC225*.

- automatic adjustment of altitude capture law in presence of intruder with significant reduction of unnecessary RAs *NOTE: this is being certified by EASA on AIRBUS new aircraft.*

Ministère de l'Écologie,

durable

du Développement

et de l'Énergie

dgac

Safety Requirements applicable to RPAs (source ICAO UASSG)

MAIN REQUIREMENTS DERIVED FROM CURRENT WORK:

➔ Maintaining an equivalent risk for mid-air collision or an equivalent level of safety (ELOS)

➔ Compatibility with ACAS and either coordinated responses or assurance of compatible maneuvers

Consequences:

X

DSNA

dgac

- \rightarrow Safety case must be established per class of airspace
- \rightarrow Safety case must be established per type of RPAs

→ Surveillance requirements are expressed on ADS-B (OUT and IN), on cooperative surveillance (transponder)

➔ Automatic following of evasive maneuvers is recommended to resolve latency issue with the remote pilot

8

Ministère de l'Écologie, du Développement durable et de l'Énergie

European work on Detect & Avoid The MIDCAS project

 MIDCAS is a European project (European Defense Agency) <u>http://www.midcas.org/</u>

- Traffic situational awareness (provided to the remote pilot and/or to airborne systems)

- TRAFFIC AVOIDANCE (~self separation capability involving the remote pilot and/or automated systems for 2 minutes horizon aiming at preventing ACAS RA)

- Collision avoidance with automatic maneuver compatible with ACAS II (maneuver determined AFTER ACAS RA on other aircraft).

Ministère de l'Écologie, du Développement durable et de l'Énergie

dgac

European work on Detect & Avoid The MIDCAS project (backup slide)

- These RPAs are MALE type and aim at flying in non segregated airspace (at least before reaching their cruise level). The system shall:
 - (req 26) provide information for traffic separation (deconfliction as defined in the Eurocontrol document) to remote pilot (who can take an action according to airspace rules, if needed)
 - (req 12) provide a last resort emergency manoeuvre to prevent collision between air vehicles (collision avoidance as defined in the Eurocontrol document)
 - (req 13) not rely on operator for collision avoidance
 - (req 14) provide a solution for the S&A issue for IFR enroute flights in IMC and VMC with comparable levels of safety as manned aviation
 - (req 20) be compatible with established ACAS (TCAS) manoeuvre logic
 - (req 32) be auto-compatible (MIDCAS equipped UAS vs MIDCAS equipped UAS), this shall be demonstrated, at least in simulations

Ministère de l'Écologie, du Développement durable et de l'Énergie

dgac

US work on UAS D&A= ACAS Xu (source ICAO ASP13-19 Sept. 2012)

- ACAS Xu is a variant of ACAS adapted to unmanned (remotely piloted) aircraft.
- The D&A function would rely on

- Detection: various surveillance means (electro-optical, radar, ADS-B, etc.) to enable detection of non-cooperative traffic

 Avoidance: vertical (and horizontal) advisories issued by dynamic programming logic (core of ACAS X)

DSNA

RÉPUBLIQUE FRANÇAIS Ministère de l'Écologie,

durable

du Développement

et de l'Énergie

US work on UAS D&A= ACAS Xu (source ICAO ASP13-19 Sept. 2012) (backup slide)

- Features of ACAS Xu: Plug-and-Play Surveillance Includes dual link Automatic Dependent Surveillance - Broadcast (ADS-B) reception capabilities, and could include active surveillance. Additionally, sources such as electrooptical (EO) and radar can be input to ACAS XU to provide artificial vision for non-cooperative traffic.
- Tailored Advisories ACAS X threat resolution logic can be tailored to accommodate vehicle performance. Several logic tables designed to accommodate different classes of UAS performance will be developed.
- Coordinated Advisories ACAS XU will coordinate with other ACAS XU equipped UAS, and will use "responsive coordination" for TCAS II or ACAS XA threats, which automatically chooses a compatible maneuver with the threat aircraft. In this way, ACAS XU ensures interoperability with legacy systems

Conclusions and future work

ICAO: Outcome of ANCONF/12: recognition of incremental approach with ASBU (B1-90, B2-90, B3-90)

ICAO UASSG is dealing with all issues

- ICAO manual for 2014 RPAS Symposium in October 2014
- → SARPS for 2016 (all ICAO annexes are potentially affected)

Europe: MIDCAS is planning to demonstrate acceptable solutions for collision avoidance by 2015.

US: ACAS X is being designed for conventional aircraft (demo in 2013, MOPS in 2017) and ACAS Xu is specifically designed for RPA (MOPS in 2020), while ensuring compatibility with ACAS X-equipped aircraft.

Ministère de l'Écologie, du Développement durable et de l'Énergie

dgac

Thank you - Questions?

Ministère de l'Écologie, du Développement durable et de l'Énergie

DSNA

EIWAC2013 – Tokyo – 19-21 February 2013