

Boeing Air Traffic Management Overview and Status

ENRI International Workshop on ATM/CNS – EIWAC 2010

November 10-15, 2010 Tokyo, Japan

Matt Harris

Avionics – Air Traffic Management Boeing Commercial Airplanes

Topics

- Boeing Airspace Operational Design (AOD) Description
- Near-Term 2008 2012: Technology Core Requirements
- Near-Term 2008 2012: Operational Concepts and Benefits for Phases of Flight
- Mid-Term 2013 2018: Operational Concepts for Phases of Flight

AOD Description

What the Airspace Operational Design is: Timeline

Boeing Commercial Airplanes (BCA) developed the AOD as a blueprint for making airplane upgrades and improving airspace and airport operations

Why the AOD was Created

- Support Boeing's efforts to accelerate the modernization of air traffic management operations
- Improve airspace capacity, safety, and efficiency, and reduce environmental impact for air traffic operations

How the AOD will be Implemented

Boeing will implement a single-focused plan by working with key industry stakeholders

From Concept of Operations to Implementation

What Success Looks Like

Success occurs only here

Air Transportation System Roadmap

Airspace Design

Population Airplane

Control by Radar & Navaid

Based Airspace

TFM CATMT

RAAS ASSA/FAROA/Alerting

Based Airspace

4D Trajectory-Based

Air-Ground Integration

Future Datalink Surveillance

Time-Based **Arrivals ATM Automation** RNP/RNAV Arrivals Key Capabilities Conflict Detection **Polar Satcom SWIM** Voice **ATS** Integrated Datalink Communication (FANS 1/A) Datalink ATN AOC ACARS Broadband IP **RNAV Enroute GLS** GL_S **Early RNP SAAAR** CAT I 4D Nav CAT III **RNAV Dep/Arr at Navigation Expanded Use Major Airports** of RNP

Time-Based

Conflict Res. TRACON Autom. **Improved Conflict Resolution VoIP** Non-Integrated Integrated Datalink **Future Comm Capability** ATN (FANS 2) Galileo/GPS III **Expanded Use of Broad Use of** RNP based **4D Navigation** RNP at Opt. Separation Major Airports Rnwy Exit Airborne Airborne ACAS/ADS-B ADS-B In **CDTI SA** Spacing Separation Integration

Virtual Tower

Enhanced TFM

BOEING is a trademark of Boeing Management Company, Copyright © 2008 Boeing, All rights reserved.

Prim. / Sec. Radar

ADS-C

Surveillance

R8

AMM

ADS-B Out

ATC Surv.

Multilateration

Near Term 2008-2012

Technology Core Requirements

Near-Term Transition Step

Near-Term Transition Step: RNP

Near-Term Transition Step: 3D-Paths

Near-Term Transition Step: GLS

Foundation for Trajectory – and Performance **Airspace Operations** GLS is the airborne segment of the GPS landing system, which uses the GPS signal as well as a ground-based correction signal to provide instrument landing capability for low visibility operations. xLS **GBAS Based GLS** GLS Reduces / Reduces Inter-Arrival Eliminates ILS **Critical Areas** Spacing

Near-Term Transition Step: ADS-B Out

Foundation for Trajectory – and Performance **Based Airspace Operations** ADS-B Out refers to airplane ADS-B automatic broadcasting of Out current position and velocity. Ground-based and airplanebased receivers use information for various air traffic surveillance applications.

Near-Term Transition Step: Core Requirements

Near-Term Air and Ground System Features

Required Ground System Features:

- RNP procedure design and operational approval
- Time-Based RNP/RNAV arrivals automation capabilities
- GPS Local Area Augmentation Systems (GBAS Ground Stations)
- ADS-B receivers, surveillance data processing, ATC displays, ATC communications and changes in separation standards

Near-Term 2008-2012:

Operational Concepts for All Phases of Flight

Overview

Airlines Around World Realize Value of RNP

Airlines Flying RNP Procedures		RNP Level	Value Examples
Alaşka Airlineş	737NG	0.11	"Palm Springs27 avoided diverts in three months, 1,890 miles saved"
WEST JET	737NG	0.10	"Two RNP procedures, one airport, \$2.5 - \$3.5 M annual savingsembarking on 90 procedures for 24 destinations"
QANTAS	737NG	0.10	 ZQN 3,200' lower approach, 4,000' lower departure
			Brisbane 18 miles saved, impacts fuel burn, noise, arrival rate, and emissions
			Eight domestic airports including Sydney
	737NG	0.15	"RNP will sustain or boost capacity"
			 "Plans for Houston, Newark, Guam, and several sites in South and Central America"
Austrian	737NG	0.15	"Innsbruck minimums reduced by 1,300 feetreduced diversions, lower fuel burn, improved service reliability"
IN CHINA 中國國際航空公司	757	0.30	"China plans to certify 50 more RNP procedures in a five year period"

Near-Term 2008-2012: Operational Concepts and Benefits for Phases of Flight

Airline Customers are Incorporating AOD Elements

UNITED

RNP (Congested)

GLS

MLS

Boeing is not pursuing MLS

3-D Path with Path **Options***

*3-D Path Arrival Management trials at DEN in 2009

ADS-B Out

Mid-Term 2013-2018

Operational Concepts

En Route

Terminal

Key aircraft Operational Concepts for Phases of Flight features 4D RNP Low noise, minimum fuel GLS CATII/III departures **Data Link** ADS-B/CDTI 4D RNP, datalink, ATM tools Weather High throughput in low visibility Information Opt runway HUD and Wake mitigation exit Surface and Oceanic and **Arrival** and En Route – En Route – **Departure Domestic** Remote **Transitional** Surface to Arrival Climb and Cruise

Oceanic

Terminal

En Route

Operational Concepts for Phases of Flight

- Key aircraft features
- 4D RNP
- GLS CATII/III
- Data Link
- ADS-B/CDTI
- Weather Information
- Opt runway exit
- High throughput and flexible routing
- 4D RNP, datalink, ATM tools
- Dynamic weather re-routing
- Data link, ATM tools
- Weather information in flight deck

Surface and Departure

En Route – Domestic Climb and Cruise

Oceanic and Remote

En Route – Transitional to Arrival Arrival and Surface

Terminal

En Route

Oceanic

En Route

Terminal

Next Steps To Refine the Mid-Term Plan

- Benefits and cost analysis to support the business case
- Airplane capability definition
- Trade studies to refine operational concept and requirements
- Coordination with avionics suppliers
- Industry collaborations and standards committees on-going and essential (NextGen, SESAR, RTCA, etc.)
- Briefings to BCA airplane programs and marketing
- External briefings to influence mid-term thinking and solicit feedback

Thank You