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Radio wave propagation is delayed by ionospheric plasma that

change the refractive index
At 1.57542 GHz (GPS L1), 16 cm delay per | TECU (10'°m-2).
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* lonospheric delay is one of the largest error source.

* Inhomogeneous ionosphere (0p; # OpPu) results in
differential correction errors.
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g MSAS (MTSAT Satellite Based Augmentation System)
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GBAS

- Local sharp ionospheric delay gradients results
In error.

SBAS

- Small-scale lonospheric irregularities may be
miss-detected.

- lonospheric irregularities smaller than the grid
size (5°x5°) cannot be well corrected.

Both

- Scintillation associated with ionospheric
irregularities may degrade availability of GNSS.
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ENRI lonospheric anomalies in low latitudes

u . 2k Storm Enhanced Den5|ty (SED)
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3k Plasma Bubble — e
eodelc or gtude
Vertical delay over japan on 7 Aprll 2002 [Foster et a|.’ 2002]

* Equatorial anomaly (Always)

- Enhanced ionospheric plasma density
ME around % 15° magnetic latitude
&' % Plasma bubble (low latitude, frequent)
6.4 R :_

- Local plasma density depletion

4.8 * SED (mid-latitude, rare)

| - Increased ionospheric density
associated with severe magnetic
storms
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Plasma density (ROCSAT-1)

¢ DMSP F12 02 March 2000 1246-1256 UT ¢ DMSP F15 02 March 2000 1326-1338 UT

Unique phenomenon in low .
latitude. : WM\\

Extreme depletion in plasma " N
plasma buble

density inside of a bubble. B 4

I 12:46 12:48 12:50 12:52 12:54 12:56 ur  13:26 13:30 13:34 13:38
| 1 6 1 N 9 116.0 112.7 108.

ty (em™)
ty (em™)

Log D
e D

MLat 17.1 -1,
MLT 212 21.1

' [Burke et al., 2004a]

0.9 3.4
20.3 20.2

Ver)/ Shal"p edges (|5_3O km) VIT 204 204
Sharp spatial gradient IN Vertical delay over Japan on 7 April 2002
ionospheric delay. o - _ﬁ |

Frequent occurrence after P avas
sunset in solar maximum 2 A L

period. ot il Dt 34°I°'4
-
BN 30mm4.8

8



General characteristics of the plasma bubble is rather
well known unlike storm-enhanced density (SED).

Number of observations of ionospheric gradients with
short baselines are limited: “worst case’” may not have
been recorded yet.

Modeling study based on the large amount of past
studies on plasma bubble should be effective.
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plasmasphere

upper ionosphere

lasma bubble
/ P \

virtual thin layer
B A i - 2D model) \y |
- - =
meridional cut zonal cut

Plasma bubble impacts on satellites at west/east low
elevation angles or high elevation were not significant.
Plasma bubble develops along the magnetic field line.
Total delays may be different for the same ionospheric

pierce points, which cannot be described by 2-D models.
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Background plasma distribution * plasma bubble

Background plasma distribution:

- NeQuick [Giovannni and Radicella, 1990; Radicella
and Zhang, |995]

Plasma bubble:

- defined on the equatorial vertical plane with
equivalent longitude and altitude

- represented as depletion normalized by background
(no plasma bubble) density

Written in FORTRAN (Platform independent).
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High solar activity, March, 11 UT
Vertical cross Vertical delay
section
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Plasma bubble drifts at a
constant zonal velocity.

Receiver is fixed on a
ground.

A satellite is picked up
from standard 24 satellite
constellation.

Delay changes as local time
goes by (background
changes), as a satellites
moves, and as a plasma

bubble passes over.
EIWAC2010, Akihabara, Tokyo, 2010
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Model (Medium solar activity, March) Example observed at
S |5 Okinawa on 24 March 2004
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* Slant ionospheric delay at (135°E, 25°N) with a plasma

bubble in March with medium solar activity is modeled.
* Delay depletion due to a plasma bubble is reproduced.
* The result looks similar to observed delay variation.
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\a ma bubble

Plasma bubble drifts at a constant
zonal velocity.

Airborne receiver moves toward
the reference station at a constant
velocity.

A satellite is picked up from
standard 24 satellite constellation.

Positioning errors calculated with
the delays of the reference and
airborne receivers.

No monitor neither on the
ground nor airborne.

EIWAC2010, Akihabara, Tokyo, 2010
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High solar activity, March, 11 UT
Vertical cross Vertical delay
section
1000 ~ 16 * Plasma bubble
£ B . parameters
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Background parameters

- season: March

- solar activity: high

- UT=1llatt=0

Receiver

- ground: |35°E, 25°N

- air: 134.6°E, 25°N, 80 m/s. (Approach to RW(09)
Satellite geometry

- The worst case geometry of (1)

Run simulations by changing the plasma bubble
initial location from |30 to 140°E.

EIWAC2010, Akihabara, Tokyo, 2010
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Séven visible satellites.

0.2 m vertical error at 6 km
from the reference station.
Two satellites were impacted.
The southward low elevation
satellite was mainly impacted.
The impact on the high
elevation satellite was not
significant.
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Seven visible satellites.

|.2 m vertical error at 6 km
from the reference station.
One satellites was impacted.
Small error mainly due to
small delay difference.
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Impacts of the low latitude ionosphere on SBAS has
been studied with simulations using the 3-D
ionosphere model.

- Strong ionospheric gradient associated with the
equatorial anomaly makes it difficult to derive
ionospheric correction term.

- Plasma bubbles are hardly detected by SBAS ground
monitor stations and result in large user error.

Further studies are planned to be conducted.
- More simulations with different conditions
- Optimal distribution of ground reference staitons
- Backscatter radar monitoring of plasma bubbles for
SBAS

EIWAC2010, Akihabara, Tokyo, 2010
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GNSS measurements are “point measurements’.

- There are a lot of “blank” area.

- GNSS measurement are used both for
navigation and monitoring: not independent

A technique to monitor ionopsheric anomalies

effectively in a wide area would be useful.

- It should be independent of GNSS signals:
external monitor

There are a number of techniques that have been
used to study the ionosphere.

EIWAC2010, Akihabara, Tokyo, 2010
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2221 LT
* Plasma bubble accompany
plasma irregularities of
various scale sizes from

kilometer down to meter.

’
..

Latitude [deg] =
t'u -

Plasma
-4 8 bubble

98 99 100 0] :

* lrregularities can be
detected effectively by a
backscatter radar
using VHF band.

(a) Radar backscatter

(ionospheric density)
(c) Backscatter map

% Backscatter radar can on airglow

detect plasma bubbles. 98 99 100 101 ¢

Longitude [deg)

[Otsuka et al., 2004]
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B (magnetic
field)

N

)\irregularity

plasma
irregularity

\

2 >\irregu|arity = }\radar
=> scattered waves T
are in-phase

Radar

Detects echoes scattered by
plasma irregularities

Intensified echo when radar
wave vector is twice the
irregularity wavelength
(Bragg scattering)

* 2 Kradar = kirregularity

Irregularities alighed with
magnetic field => radar beam
perpendicular to magnetic
field for strong echo

* Kiadar*B=0

VHF band (typically 30-50
MHz) is often used.

EIWAC2010, Akihabara, Tokyo, 2010
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u Echo power on 28 March 2006
o South/High
Equatorial Atmosphere Radar (47 MHz, Indonesia) g ~ 300 - T . ~1600 km above the
q £ : / magnetic equator
=M.
© - ]
e S AW s S § 3 3
560-Yagi circular array _ 3 o 0 g
%) East -250 0 250 West
Nagoya Univ. VHF radar (30.8 MHz, Zonal distance From EAR (km)
Indonesia) [Saito et al., 2008]

Echo power in one of the beams on 31 March 2006
QUL

E 400
2 300

-

& 200

Cham §

[Courtesy of Y. Otsuka]

18-Yagi linear array

#* 2-D image of plasma bubbles by electronic beam swinging

* Wide coverage area
* Cost effective (Nagoya Univ. Radar: ~ 200,000 USD)

EIWAC2010, Akihabara, Tokyo, 2010
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*20°N, |35°E
*8 beams (azimuth * Radar coverage is determined
angles -50, -35, -20,

-5 10, 25, 40, 55°) f,f%
erange 300-1500 km

V7

by the geometry of radar
beams and the Earth’s magnetic

field.

* Plasma bubble develops along
|  the magnetic field
km - Radar monitors “magnetic
field line”.
- Different covered area for
different altitudes.

* Magnetic conjugate area in the
other hemisphere is also
covered.

EIWAC2010, Akihabara, Tokyo, 2010

25



Ty
ENRI
gl

Three major blocks:

|. lonosphere delay model
- 3-D model with plasma bubbles [Saito et al., ION
GNSS 2009]

2. Backscatter radar observation model
- Multi-beam radar
- Reject satellites of which ray-paths seen from the
ground reference pass through plasma bubbles

3. GBAS simulation

- Range correction and positioning error estimation
for an approaching airplane
- Based on the information from the blocks | and 2

EIWAC2010, Akihabara, Tokyo, 2010
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* Backscatter radar detects plasma bubbles in the radar beams

* Satellite ray-paths crossing the same magnetic field lines as

the detected plasma bubbles are rejected.
EIWAC2010, Akihabara, Tokyo, 2010
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* Radar at too high latitudes may miss-detect plasma
bubbles and error may remain.

* Closer to the magnetic equator, the more effective.
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Incoherent scatter (IS) radar

7 09:52:02 2004

Plasma density
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400

Altitude (km)
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600

Plasma bubbles

' ; 1
100 200

Zonal distance (km)

[Hysell et al., 2006]
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Frequency Peak Power
(MHz) (MW)
MU 46.5 I
Jicamarca 50 3
ALTAIR 422/160 2.5
Arecibo 430 2.5
Poker Flat 450 |.3
EISCAT Svalbard 500 I
EISCAT 933/224 |.5/5
Millstone Hill | 1290/440 2.5/5
Sondrestrom 1290 3.5
ARSR 1300 2

* Electron density (and basic plasma parameters) can be measured directly.
* The most powerful tool to monitor the ionosphere.

* ARSRs that are being decommissioned can be converted to IS radar.

EIWAC2010, Akihabara, Tokyo, 2010
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A 3-D ionospheric delay model that account for the low
latitude ionosphere including the equatorial anomaly and
the plasma bubble has been developed.

The model is a very useful tool to examine the impacts of
the low latitude ionospheric anomalies on GNSS
applications.

GBAS

- 3-D ionosphere delay model can be used to study the
effect of ionospheric anomalies in more realistic manner.

- The model was used to validate the baseline SARPs of
GAST-D (single-frequency CAT-lIl GBAS).

EIWAC2010, Akihabara, Tokyo, 2010
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- Strong ionospheric gradient associated with the
equatorial anomaly makes it difficult to derive
ionospheric correction term.

- Plasma bubbles are hardly detected by SBAS ground
monitor stations and result in large user error.

An external plasma bubble monitor by a backscatter

radar is proposed and its effects are investigated with

the 3-D ionosphere model.

- Backscatter radar monitor can significantly reduce
the potential error caused by the plasma bubble.

ARSRs that are going to be decommissioned could be
converted to IS radars to monitor the ionospheric

density directly, because the frequency and power is

suitable for IS measurements.
EIWAC2010, Akihabara, Tokyo, 2010
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