

Impact of the low latitude ionosphere disturbances on GNSS studied with a three-dimensional ionosphere model

Susumu Saito and Naoki Fujii Communication, Navigation, and Surveillance Department, Electronic Navigation Research Institute, Japan

- I. GNSS and the ionosphere
- 2. Anomalies in the low latitude ionosphere
- 3. 3-D ionosphere delay model
- 4. Studies with the model4.1.GBAS4.2.SBAS
- 5. External monitors
 5.1. Backscatter radar as a plasma bubble monitor
 5.2. IS radar
- 6. Summary

Radio wave propagation is delayed by ionospheric plasma that change the refractive index
 At 1.57542 GHz (GPS L1), 16 cm delay per 1 TECU (10¹⁶m⁻²).

* Ionospheric delay is one of the largest error source.
 * Inhomogeneous ionosphere (δρ_g ≠ δρ_u) results in differential correction errors.

ENRI SBAS (Satellite-based augmentation system) MSAS (MTSAT Satellite Based Augmentation System)

ENRI Ionospheric Anomaly and SBAS/GBAS

GBAS

 Local sharp ionospheric delay gradients results in error.

* SBAS

- Small-scale lonospheric irregularities may be miss-detected.
- Ionospheric irregularities smaller than the grid size (5°x5°) cannot be well corrected.

* Both

 Scintillation associated with ionospheric irregularities may degrade availability of GNSS.

Ionospheric anomalies in low latitudes

Delay

6.4

С Ш

40

- Plasma bubble (low latitude, frequent)
- Local plasma density depletion
- SED (mid-latitude, rare)
- Increased ionospheric density associated with severe magnetic
 - storms
 - EIWAC2010, Akihabara, Tokyo, 2010

Plasma bubbles and ionospheric density variation

- Unique phenomenon in low latitude.
- Extreme depletion in plasma density inside of a bubble.
- Very sharp edges (15-30 km).
- Sharp spatial gradient in ionospheric delay.
- Frequent occurrence after sunset in solar maximum period.

[Burke et al., 2004a]

Vertical delay over Japan on 7 April 2002

Need of modeling

- General characteristics of the plasma bubble is rather well known unlike storm-enhanced density (SED).
- Number of observations of ionospheric gradients with short baselines are limited: "worst case" may not have been recorded yet.
- Modeling study based on the large amount of past studies on plasma bubble should be effective.

- Plasma bubble develops along the magnetic field line.
- Total delays may be different for the same ionospheric pierce points, which cannot be described by 2-D models.

ENRI 3-D ionospheric delay model with plasma bubbles

- Background plasma distribution * plasma bubble
- Background plasma distribution:
 - NeQuick [Giovannni and Radicella, 1990; Radicella and Zhang, 1995]
- Plasma bubble:
 - defined on the equatorial vertical plane with equivalent longitude and altitude
 - represented as depletion normalized by background (no plasma bubble) density
- * Written in FORTRAN (Platform independent).

Plasma bubble model

Test : Slant ionospheric delay variation

Plasma bubble

 Plasma bubble drifts at a constant zonal velocity.

- Receiver is fixed on a ground.
- A satellite is picked up from standard 24 satellite constellation.
- Delay changes as local time goes by (background changes), as a satellites moves, and as a plasma bubble passes over.

ENRI Test: Slant ionospheric delay variation

- Slant ionospheric delay at (135°E, 25°N) with a plasma bubble in March with medium solar activity is modeled.
 Delay depletion due to a plasma bubble is reproduced.
- * The result looks similar to observed delay variation.

Plasma bubble

GBAS simulation

- Plasma bubble drifts at a constant zonal velocity.
- Airborne receiver moves toward the reference station at a constant velocity.
- A satellite is picked up from standard 24 satellite constellation.
- Positioning errors calculated with the delays of the reference and airborne receivers.
- No monitor neither on the ground nor airborne.

Plasma bubble model

ENRI Simulation: Satellite geometry and plasma bubble location (2)

- Background parameters
 - season: March
 - solar activity: high
 - UT = II at t = 0
- * Receiver
 - ground: 135°E, 25°N
 - air: I 34.6°E, 25°N, 80 m/s. (Approach to RW09)
- Satellite geometry
 - The worst case geometry of (1)
- Run simulations by changing the plasma bubble initial location from 130 to 140°E.

ENRI Satellite geometry and plasma bubble location: Result with the worst vertical error

ENRI Low latitude ionosphere effects on SBAS (ENAC-ENRI Internship project)

- Impacts of the low latitude ionosphere on SBAS has been studied with simulations using the 3-D ionosphere model.
 - Strong ionospheric gradient associated with the equatorial anomaly makes it difficult to derive ionospheric correction term.
 - Plasma bubbles are hardly detected by SBAS ground monitor stations and result in large user error.
- Further studies are planned to be conducted.
 More simulations with different conditions
 Optimal distribution of ground reference staitons
 Backscatter radar monitoring of plasma bubbles for SBAS

External monitors

- GNSS measurements are "point measurements".
 There are a lot of "blank" area.
 GNSS measurement are used both for navigation and monitoring: not independent
- A technique to monitor ionopsheric anomalies effectively in a wide area would be useful.
 It should be independent of GNSS signals: external monitor
- There are a number of techniques that have been used to study the ionosphere.

Plasma bubble detection by radar

- Plasma bubble accompany plasma irregularities of various scale sizes from kilometer down to meter.
- Irregularities can be detected effectively by a backscatter radar using VHF band.
- Backscatter radar can detect plasma bubbles.

- Detects echoes scattered by plasma irregularities
- Intensified echo when radar wave vector is twice the irregularity wavelength (Bragg scattering)
 - $2 \mathbf{k}_{radar} = \mathbf{k}_{irregularity}$
- Irregularities aligned with magnetic field => radar beam perpendicular to magnetic field for strong echo
 k_{radar} • B = 0
- * VHF band (typically 30-50 MHz) is often used.

- Wide coverage area
- Cost effective (Nagoya Univ. Radar: ~ 200,000 USD)

Backscatter radar coverage

Radar coverage is determined by the geometry of radar beams and the Earth's magnetic field.

 Plasma bubble develops along the magnetic field

- Radar monitors "magnetic field line".
 - Different covered area for different altitudes.

Magnetic conjugate area in the other hemisphere is also covered.

NRI Simulation Study of Backscatter Radar for GBAS

- * Three major blocks:
 - I. Ionosphere delay model
 - 3-D model with plasma bubbles [Saito et al., ION GNSS 2009]
 - 2. Backscatter radar observation model
 - Multi-beam radar
 - Reject satellites of which ray-paths seen from the ground reference pass through plasma bubbles
 - 3. GBAS simulation
 - Range correction and positioning error estimation for an approaching airplane
 - Based on the information from the blocks I and 2

Backscatter radar detects plasma bubbles in the radar beams

Satellite ray-paths crossing the same magnetic field lines as the detected plasma bubbles are rejected.

- Radar at too high latitudes may miss-detect plasma bubbles and error may remain.
- * Closer to the magnetic equator, the more effective.

Incoherent scatter (IS) radar

Sat Aug 7 09:52:02 2004 Plasma density		Frequency (MHz)	Peak Power (MW)
	MU	46.5	I
60 61	Jicamarca	50	3
km)	ALTAIR	422/160	2.5
tude (Arecibo	430	2.5
Plasma bubbles	Poker Flat	450	1.3
	EISCAT Svalbard	500	I
	EISCAT	933/224	I.5/5
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Millstone Hill	1290/440	2.5/5
[Hysell et al., 2006]	Sondrestrom	1290	3.5
	ARSR	1300	2

- Electron density (and basic plasma parameters) can be measured directly.
 The most powerful tool to monitor the ionosphere.
- * ARSRs that are being decommissioned can be converted to IS radar.

Summary (I)

- A 3-D ionospheric delay model that account for the low latitude ionosphere including the equatorial anomaly and the plasma bubble has been developed.
- The model is a very useful tool to examine the impacts of the low latitude ionospheric anomalies on GNSS applications.
- GBAS

- 3-D ionosphere delay model can be used to study the effect of ionospheric anomalies in more realistic manner.

 The model was used to validate the baseline SARPs of GAST-D (single-frequency CAT-III GBAS).

ENRI * SBAS

Summary (2)

- Strong ionospheric gradient associated with the equatorial anomaly makes it difficult to derive ionospheric correction term.
- Plasma bubbles are hardly detected by SBAS ground monitor stations and result in large user error.
- An external plasma bubble monitor by a backscatter radar is proposed and its effects are investigated with the 3-D ionosphere model.
 - Backscatter radar monitor can significantly reduce the potential error caused by the plasma bubble.
- ARSRs that are going to be decommissioned could be converted to IS radars to monitor the ionospheric density directly, because the frequency and power is suitable for IS measurements.