Study on Traffic Synchronization

Claus Gwiggner Masato Fujita Yutaka Fukuda Sakae Nagaoka

Electronic Navigation Research Institute Tokyo

EIWAC, Tokyo, November, 2010.

Contents

- 1. Traffic Synchronization
- 2. Delay propagation
- 3. Delay absorption
- 4. Conclusions

Airspace Congestion

Controller workload

Airspace Congestion

Concept of Operations

Target precision: +/- 10 sec

Current precision: +/- 30 sec

Window size: [cta-x, cta+x] sec

Window position: •between sectors •on waypoints •on merge-points •(...)

<u>Flight Trials</u>: CTA/ATC system integration studies (CASSIS) Simulation studies: Contract-based Air Transportation System project (CATS)

Concept of Operations

<u>Flight Trials</u>: CTA/ATC system integration studies (CASSIS) <u>Simulation studies:</u> Contract-based Air Transportation System project (CATS)

Queueing Delays

[Erzberger 95, Bayen 06, Balakrishnan 09]

under uncertainties

Queueing Delays

[Erzberger 95, Bayen 06, Balakrishnan 09]

under uncertainties

Queueing Delays

under uncertainties

Queueing Delays

[Erzberger 95, Bayen 06, Balakrishnan 09]

under uncertainties

Queueing Delays

under uncertainties

under uncertainties

[Erzberger 95, Bayen 06, Balakrishnan 09]

Main Results

Speed control delay 1 0 Analytical model 0 s -20 tp ٠ ◇ ts -40 Monte Carlo simulation s [Nm] Average -60 propagated delay -80 (normalized) σ=6ί Flown distance with -100 reduced speed σ*=*3(0 5-11 200 400 600 800 1000 0 0.2 0.4 0.6 0.8 1.0 0 t [s] α

$$\Delta_{j} \ge w_{i} - \frac{x_{j0} - lx_{i0}}{lv_{i}} + \frac{s_{e}}{k_{i}v_{i}}$$

with Δ_{j} : speed control delay for aircraft j
 w_{i} : metering delay for aircraft i = j-1

$$E(D_{i}) = \sum_{k=0}^{\infty} (k+1) \int_{u=0}^{\infty} \int_{v=0}^{u/\alpha} (u-\alpha v) P(k|u,v) f(u) g(v) dv du$$

with

f, g: probability density function of ϵ , d

 ${\it P}$: distribution of length of propagation

Main Results

$$\Delta_j \ge w_i - \frac{x_{j0} - lx_{i0}}{lv_i} + \frac{s_e}{k_i v_i}$$

with Δ_j : speed control delay for aircraft j
 w_i : metering delay for aircraft i = j-1

$$E(D_{i}) = \sum_{k=0}^{\infty} (k+1) \int_{u=0}^{\infty} \int_{v=0}^{u/\alpha} (u-\alpha v) P(k|u,v) f(u) g(v) dv du$$

with

f, *g*: probability density function of ϵ , *d*

P : distribution of length of propagation

Delay absorption strategy

where

 $c_L \gg c_H$: cost of delay absorbtion (kg/min) d_0 : average queueing delay $d_p(\alpha)$: propagated delay

- Delay absorption strategy
 - Trade-off

- Fuel efficiency
- Workload sharing

Consequences:

- Even in the future, there is a need for radar vectoring.
- Sequencing strategies under uncertainties should be studied.

Conclusions

- Traffic Synchronization
 - Tactical management of queues of aircraft
- Delay Propagation
 - Delay propagation <u>due to</u> trajectory prediction errors
- Delay absorption strategy
 - Trade-off between high altitude (fuel efficient) and low altitude (fuel inefficient)
 - Even when the objective is to minimize fuel (!)

Future work

• Fundamental Research

4 Conclusions

- Conditions for existence of minimum
- Delay propagation in transportation networks
- Operational Concept
 - Ground delay vs. en-route delays
 - Delay management strategies

Thank you.

claus@enri.go.jp

Traffic Synchronization

Aircraft sequencing

 $m_i m_{i-1}$

m_i Leader

Heavy

Mid/Small

Basic Operations

- Sequencing
 - First-come-first-served (FCSF)
 - Constrained position shifting (CPS)
- Metering
 - Flow control with separation constraints *m_i*

Queueing Delay				
Air	r c r a f t	e t a	s t a	d e la y
А		12:01	12:01	0
В		12:02	12:03	1
D	< c	12:04	12:05	1
C		12:05	12:07	2
FCFS delay: CPS delay:				4 min 3.2 min
Follower				
eavy	Mid/Small			71
90	120			21

60

Condition for delay propagation:

$$\begin{aligned}
\epsilon_i \ge \alpha d_i \\
(\epsilon_i - a_i) \ge \alpha d_{i+1} \\
\cdots \\
(\epsilon_i - a_i) - \sum_{j=1}^k a_{i+j} \ge \alpha d_{i+k+1} \quad (1)
\end{aligned}$$

2. Delay propagation

 ϵ

Delay triggered by aircraft *i*:

$$D_{p,i} = [k(\epsilon_i - a_i) - (k - 1)a_{i+1} - \dots - a_{i+k}] - \alpha \sum_{j=0}^k d_{i+j+1}$$
(2)
$$= k\epsilon_i - \sum_{\substack{j=0 \\ \approx 0}}^k (k - j)a_{i+j} - \alpha \sum_{\substack{j=0 \\ \approx k \alpha d_i}}^k d_{i+j+1}$$
(3)

where k is smallest number, such that (1) is smaller than d_k

Propagation approximation (high-congestion):

$$D_{p,i} \approx \begin{cases} (n-i)(\epsilon_i - \alpha d_i), \epsilon_i \ge \alpha d_i \\ 0 , \text{else} \end{cases}$$
(4)

Expectation:

$$\boldsymbol{E}(\boldsymbol{D}_{p,i}) = (n-i) \int_{u=0}^{\infty} \int_{v=0}^{u/\alpha} (u-\alpha v) f(u) g(v) dv du$$

(5)

 $\epsilon = \alpha d$ with

►d

f, g: probability density function of ϵ , d

22