

Study of INS-Aided GPS Tracking Performance under Simulated Ionospheric Scintillation Associated with Plasma Bubbles

Toshiaki Tsujii, Takeshi Fujiwara, Yoshimitsu Suganuma Japan Aerospace Exploration Agency (JAXA)

and

Keisuke Matsunaga Electronic Navigation Research Institute (ENRI)

Background (1/2)

<u>Purpose of this paper</u>

Evaluation of INS-aiding under scintillation

Ionospheric effects would degrade availability of aircraft precision approach

<u>GBAS</u>

①Spacial gradient of TEC would result in wrong correction data

- ②Scintillation would cause temporal loss of satellite lock
 - \rightarrow re-initialization of PR smoothing
 - → go around due to multiple satellites losses

Background (2/2)

Ionospheric Anomaly

- Storm Enhanced Density (SED)
- Rare
- Mid~High Latitude Region
- Spatial Gradient: >400mm/km
- Equatorial Plasma Bubble (EPB)
 - Low~Mid Latitude Region
 - Scintillation Frequent

EPB and signal loss-of lock observed over Japan

12 Feb. 2000. Red color shows the signal loss-of lock. [Ma and Maruyama, GRL, 2006]

Doppler aiding by INS

Inter mediate Freq. data recorded IF frequency : 4,130,400 Hz sampling rate : 16,367,600 Hz

GPS Front-End (Left: TCXO, Right: OCXO)

Flight Profile – Take/Off -

Velocity (NED)

Effect of Doppler Aiding Carrier phase error for each satellite (B_L=3Hz, TCXO, MEMS-INS) Without Aiding — — With Aiding

0.2

0.1

-0.1

-0.2 <u>-</u>0

0.2

0.

P RN5

50

PRN12

 $\sigma_{\phi} = 7.2 \ mm$

carrier error (cycles)

carrier error (cycles)

carrier error (cycles)

std = 0.02110

std = 0.01912(

150

100

carrier error (cycles)

std = 0.01

0.2

0.1

PRN9

Time (sec)

 $\sigma_{\phi} = 3.8 \ mm$

Effect of Aiding is demonstrated by using real data (Without Scintillation)

Analyses of Scintillation Associated with Plasma Bubble

with Plasma Bubble

TEC Variation during strong scintillation ①

Amplitude Scintillation Parameter and PSD of Intensity extracted from real data during Strong Scintillation (1)

S4 Variation

Intensity spectral density (12:51)

Phase Scintillation Parameter and PSD of Phase extracted from real data during Strong Scintillation ①

Sigma of Phase error

Phase spectral density (12:51)

and PRN21 (bottom)

 $P_{\delta\phi}(f) = T \cdot f^{-p}$

GPS-IF data Logging System @ King Mongkut's Institute of Technology (KMITL), Bangkok

Summary

- Real data of scintillation associated with plasma bubble was analyzed and extracted <u>intensity/phase</u> <u>variation were embedded in the simulated GPS IF</u> <u>data</u>
- The improvement of carrier tracking by Doppler aiding was demonstrated and an example showed that the <u>rate of cycle slip was reduced by 30 %</u>

Future work

- Collect the real scintillation data (IF) and evaluate INS-Aiding performance under scintillation
- Verify the improvement of GBAS availability by INS-Aiding under scintillation associated with plasma bubble

