

Current GPS Monitoring Activities in Thailand and Total Electron Content (TEC) Study at Chumphon and Bangkok, Thailand

Sarawoot Rungraengwajiake¹ Assoc.Prof. Dr. Pornchai Supnithi² Dr. Takuya Tsugawa³

(1), (2) Faculty of Engineering, King Mongkut's Institute of Technology Ladkrabang, Thailand(3) Space Environment Group, National Institute of Information and Communications Technology, Japan

Acknowledgements

- I would like to thank the EIWACS 2010 organizers and ENRI for the invitation to attend this exciting workshop.
- In addition, acknowledgements to
 - KMITL, Thailand
 - CU (Chulalongkorn University), Thailand
 - ENRI, Japan
 - NICT, Japan
 - Kyoto University
 - Meteorology Department, Thailand
 - Aeronautical Radio of Thailand
 - City Planning Dapartment, Thailand
 - Phuket Technical College, Thailand
 - Talang Technical College, Thailand

Outline

- Introduction
- Current GPS networks in Thailand
- TEC Basics
- Data and analysis method
- Results and discussions
- Conclusions

Introduction

Total electron content (TEC) is an important ionospheric parameter which directly affects the radio waves propagating through the ionosphere.

It is well-known that at the low latitude regions, a characteristic of the ionosphere is symmetric peaks in electron density known as

Equatorial lonospheric Anomaly (EIA)

Some interesting locations near the equator

Introduction

- The availability of TEC measurement data are required for the development of ionospheric models such as the International Reference Ionosphere (IRI).
 - (IRI 2007 website http://ccmc.gsfc.nasa.gov/modelweb/models/ iri_vitmo.php)
- Recent increase in availability of TEC data has largely come from a rapid increase in the number of Global Position System TEC data (GPS TEC) over land.
- At the EIA regions, TEC is enhanced and peaks around from the magnetic equator. For the equatorial region, differential TEC contributes to the plasma bubble study.

Introduction

- Augmentations are necessary for the use of satellitebased navigation in aeronautical applications
- One of the important sources of positional error is due to the ionospheric effects on the navigational signals. The ionospheric conditions vary depending on locations, time of year, solar activity and others, hence, they need to be well studied.
- The International Civil Aviation Organization (ICAO) has realized the importance of ionospheric effects on the global navigation satellite system (GNSS).

- Overview available GPS networks in Thailand
- Study the diurnal and seasonal variations of total electron content (TEC) for different seasons at the equatorial magnetic latitude at Chumphon and Bangkok, Thailand during 2009.
- Both locations are near the magnetic equator.
- Analyze the slant TEC is converted into the delay in terms of distance relevant to aeronautical applications.

World GPS Networks

GPS Earth Observation Network (GEONET)

International GPS Service (IGS)

Continuously Operating Reference Stations (CORS)

SouthEast Asia Low-latitude

SouthEast Asia IOnospheric Network (SEALION)

4 STATIONS

Station	GPS	Type of Interval		RINEX
	Receiver	observation	(s)	Version
Chiangmai	Javad TPS	C1 P1 P2 L1	00	2.1
(CMU)	Legacy	l2 D1 D2	JU	
Bangkok	Javad TPS	C1 P1 P2 L1	חפ	2.1
(KMI)	Legacy	l2 D1 D2	JU	
Chumpon	Javad TPS	C1 P1 P2 L1	חפ	2.1
(CPN)	Legacy	l2 D1 D2	JU	
Phuket	Javad TPS	C1 P1 P2 L1	חפ	2.1
(PTC)	Legacy	L2 D1 D2	υ	

Department of Public Works and Town & Country Planning (DPT), Thailand

Department of Public Works

and Town & Country Planning (DPT)

Station	GPS Receiver	Type of observation	Interval (s)	RINEX Version
Chiangmai (CHMA)	Leica GRX1200 Pro	C1 L1 P2 L2	5	2.11
Uttaradit (UTTD)	Leica GRX1200 Pro	C1 L1 P2 L2	5	2.11
Udonthani (UDON)	Leica GRX1200 Pro	C1 L1 P2 L2	5	2.11
Nakhonsawan (NKSW)	Leica GRX1200 Pro	C1 L1 P2 L2	5	2.11
Sisaket (SISK)	Leica GRX1200 Pro	C1 L1 P2 L2	5	2.11
Nakhonratchasima (NKRM)	Leica GRX1200 Pro	C1 L1 P2 L2	5	2.11
Bangkok (DPT9)	Leica GRX1200 Pro	C1 L1 P2 L2	5	2.11
Chanthaburi (CHAN)	Leica GRX1200 Pro	C1 L1 P2 L2	5	2.11
Prachuapkhirikhan (PJRK)	Leica GRX1200 Pro	C1 L1 P2 L2	5	2.11
Suratthani (SRTN)	Leica GRX1200 Pro	C1 L1 P2 L2	5	2.11
Songkla (SOKA)	Leica GRX1 200 Pro	C1 L1 P2 L2	5	2.11

*** Total = 11 stations

KMITL& CU Network

In collaboration with Kyoto University

6 STATIONS

Station	GPS	Type of	Interval	DINEY Vorsion	
	Receiver	observation	(s)	KINEA VEISIOII	
ongkai	Trimble	L1 L2 P2 C1	1	2.1	
	5700				
isamrong	Trimble	L1 L2 P2 C1	1	2.1	
	5700				
bonratchathani	Trimble	L1 L2 P2 C1	1	2.1	
	5700				
mai	Trimble	L1 L2 P2 C1	1	2.1	
	5700				
angkok		Manual			
nuket		Manual			

* CU = Chulalongkorn University

Stations

TEC Basics

Day Number (2007)

Slant TEC

Slant TEC can be computed from the pseudorange P1, P2 or the carrier phase L1,L2 (Blewitt, 1990)

$$STEC = \frac{2(f_1 f_2)^2}{k(f_1^2 - f_2^2)} (P_2 - P_1)$$
$$STEC = \frac{2(f_1 f_2)^2}{k(f_1^2 - f_2^2)} (L_1 \lambda_1 - L_2 \lambda_2)$$

Need cycle slip correction for the ambiguity of the cycle number

Vertical TEC (VTEC)

VTEC=STEC $\times \cos \chi$

where
$$\chi = \arcsin\left(\frac{R_E \cos \alpha}{R_E + h}\right)$$

where χ = the zenith angle

- $R_{\rm E}$ = the mean radian of the Earth
- α = the elevation angle of GPS
- h = the height of the ionosphere

Bias computation

These techniques have been developed and verified for a network with many receiver stations

TEC=(STEC -
$$b_s - b_r$$
)×cos χ

 $b_{\rm s}$ - the satellite bias $b_{\rm r}$ - the receiver bias

Minimum Variance Method

Select the receiver bias that gives

the minimum variance Slant TEC

Ionospheric Delay

The measured distance (in meters) can be expressed as

$$d = d_0 + \delta_{ion} + \delta_{tropos} + c * \delta_t + w$$

 d_0 - an actual distance δ_{ion} - ionospheric errors δ_{tropos} - tropospheric errors δ_t - hardware clock error *w* - the noise.

The ionospheric delay

$$\delta_{ion} = \frac{40.3}{f^2} ATEC \quad (m)$$

For the L1 frequency at 1.57542 GHz, 1 TECU is about 16 cm delay.

Data and Methodology

Chumphon (10.72 °N, 99.37 °E)

Bangkok (13.73 °N, 100.78 °E

Seasons

- 20 March 2009 (March equinox)
- 21 June 2009 (Summer solstice)
- 8 October 2009 (Autumnal equinox)
- 21 December 2009 (Winter solstice),

Observation Setup

Rinex files every 30 seconds

TEC Computation

Diurnal variation of VTEC at Chumphon station

KMITI

Diurnal variation of VTEC at Bangkok station

Slant TEC of Bangkok station in 2009

(c) Autumnal equinox

(b) Summer Solstice

(d) Winter solstice

Slant TEC of Chumphon station in 2009

Ionospheric delay time of Bangkok station in 2009

(a) Vernal equinox

(c) Autumnal equinox

(b) Summer Solstice

(d) Winter solstice

Ionospheric delay time of Bangkok station in 2009

Future works

- TEC Gradient investigation around Suvarnabhumi airport
- Partners: KMITL, ENRI, Aeronautical Thailand Co.
- Cooperation on the data collection and analysis in the low-latitude and equatorial regions for the upcoming solar maximum period.

Non-uniform ionospheric delay distribution

* Working Paper: CNS/MET SG/14 WP/43, 19-22 July 2010, Jakarta, Indonesia

Dual-frequency GPS Data Collection

Thank You

King Mongkut's Institute of Technology Ladkrabang

BACKUP

$$f_1 P_1 = f_1 \rho + \frac{I}{f_1} + f_1 c(\tau_1^r + \tau_1^s) + f_1 \varepsilon_{P1}$$

$$f_2 P_2 = f_2 \rho + \frac{I}{f_2} + f_2 c(\tau_2^{\gamma} + \tau_2^{\varsigma}) + f_2 \varepsilon_{P2}$$

$$f_1 P_1 - f_2 P_2 = (f_1 - f_2)\rho + (\frac{1}{f_1} - \frac{1}{f_2})I + c[f_1(\tau_1' + \tau_1') - f_2(\tau_2' + \tau_2')] + (f_1 \varepsilon_{P1} - f_2 \varepsilon_{P2})$$

$$\begin{aligned} \frac{1}{(f_1 - f_2)} (f_1 P_1 - f_2 P_2) &= \rho + \frac{1}{(f_1 - f_2)} (\frac{1}{f_1} - \frac{1}{f_2}) I + \frac{c}{(f_1 - f_2)} [f_1(\tau_1' + \tau_1') - f_2(\tau_2' + \tau_2')] \\ &+ \frac{1}{(f_1 - f_2)} (f_1 \varepsilon_{F1} - f_2 \varepsilon_{F2}) \end{aligned}$$

$$P_{5} = \frac{1}{(f_{1} - f_{2})}(f_{1}P_{1} - f_{2}P_{2})$$

$$P_5 = \rho + \frac{1}{(f_1 - f_2)} (\frac{1}{f_1} - \frac{1}{f_2})I + \frac{c}{(f_1 - f_2)} [f_1(\tau_1' + \tau_1^*) - f_2(\tau_2' + \tau_2^*)] + \frac{1}{(f_1 - f_2)} (f_1\varepsilon_{F1} - f_2\varepsilon_{F2})$$

$$P_{5} = \rho + \frac{1}{(f_{1} - f_{2})} \left(\frac{f_{2} - f_{1}}{f_{1} f_{2}}\right) I + \frac{c}{(f_{1} - f_{2})} \left[(f_{1} \tau_{1}^{r} - f_{2} \tau_{2}^{r}) + (f_{1} \tau_{1}^{r} - f_{2} \tau_{2}^{r}) \right] + \frac{1}{(f_{1} - f_{2})} (f_{1} \varepsilon_{\rho_{1}} - f_{2} \varepsilon_{\rho_{2}})$$

$$P_{5} = \rho - \frac{1}{f_{1}f_{2}}I + \frac{c}{(f_{1} - f_{2})}[(f_{1}\tau_{1}' - f_{2}\tau_{2}') + (f_{1}\tau_{1}' - f_{2}\tau_{2}')] + \frac{1}{(f_{1} - f_{2})}(f_{1}\varepsilon_{P1} - f_{2}\varepsilon_{P2})$$

Hardware delay term

Noise term

$$P_5 = \frac{1}{(f_1 - f_2)} (f_1 P_1 - f_2 P_2)$$

$$P_{5} = \rho + \frac{1}{(f_{1} - f_{2})} \left(\frac{1}{f_{1}} - \frac{1}{f_{2}}\right) I + \frac{c}{(f_{1} - f_{2})} \left[f_{1}(\tau_{1}' + \tau_{1}') - f_{2}(\tau_{2}' + \tau_{2}')\right] + \frac{1}{(f_{1} - f_{2})} \left(f_{1}\varepsilon_{F1} - f_{2}\varepsilon_{F2}\right) + \frac{c}{(f_{1} - f_{2})} \left[f_{1}(\tau_{1}' + \tau_{1}') - f_{2}(\tau_{2}' + \tau_{2}')\right] + \frac{1}{(f_{1} - f_{2})} \left(f_{1}\varepsilon_{F1} - f_{2}\varepsilon_{F2}\right) + \frac{c}{(f_{1} - f_{2})} \left[f_{1}(\tau_{1}' + \tau_{1}') - f_{2}(\tau_{2}' + \tau_{2}')\right] + \frac{c}{(f_{1} - f_{2})} \left[f_{1}(\tau_{1}' + \tau_{1}') - f_{2}(\tau_{2}' + \tau_{2}')\right] + \frac{c}{(f_{1} - f_{2})} \left[f_{1}(\tau_{1}' + \tau_{1}') - f_{2}(\tau_{2}' + \tau_{2}')\right] + \frac{c}{(f_{1} - f_{2})} \left[f_{1}(\tau_{1}' + \tau_{1}') - f_{2}(\tau_{2}' + \tau_{2}')\right] + \frac{c}{(f_{1} - f_{2})} \left[f_{1}(\tau_{1}' + \tau_{1}') - f_{2}(\tau_{2}' + \tau_{2}')\right] + \frac{c}{(f_{1} - f_{2})} \left[f_{1}(\tau_{1}' + \tau_{1}') - f_{2}(\tau_{2}' + \tau_{2}')\right] + \frac{c}{(f_{1} - f_{2})} \left[f_{1}(\tau_{1}' + \tau_{1}') - f_{2}(\tau_{2}' + \tau_{2}')\right] + \frac{c}{(f_{1} - f_{2})} \left[f_{1}(\tau_{1}' + \tau_{1}') - f_{2}(\tau_{2}' + \tau_{2}')\right] + \frac{c}{(f_{1} - f_{2})} \left[f_{1}(\tau_{1}' + \tau_{1}') - f_{2}(\tau_{2}' + \tau_{2}')\right] + \frac{c}{(f_{1} - f_{2})} \left[f_{1}(\tau_{1}' + \tau_{1}') - f_{2}(\tau_{2}' + \tau_{2}')\right] + \frac{c}{(f_{1} - f_{2})} \left[f_{1}(\tau_{1}' + \tau_{1}') - f_{2}(\tau_{2}' + \tau_{2}')\right] + \frac{c}{(f_{1} - f_{2})} \left[f_{1}(\tau_{1}' + \tau_{1}') - f_{2}(\tau_{2}' + \tau_{2}')\right] + \frac{c}{(f_{1} - f_{2})} \left[f_{1}(\tau_{1}' + \tau_{1}') - f_{2}(\tau_{2}' + \tau_{2}')\right] + \frac{c}{(f_{1} - f_{2})} \left[f_{1}(\tau_{1}' + \tau_{1}') - f_{2}(\tau_{2}' + \tau_{2}')\right] + \frac{c}{(f_{1} - f_{2})} \left[f_{1}(\tau_{1}' + \tau_{1}') - f_{2}(\tau_{2}' + \tau_{2}')\right] + \frac{c}{(f_{1} - f_{2})} \left[f_{1}(\tau_{1}' + \tau_{1}') - f_{2}(\tau_{2}' + \tau_{2}')\right] + \frac{c}{(f_{1} - f_{2})} \left[f_{1}(\tau_{1}' + \tau_{2}') - f_{2}(\tau_{2}' + \tau_{2}')\right] + \frac{c}{(f_{1} - f_{2})} \left[f_{1}(\tau_{1}' + \tau_{2}') - f_{2}(\tau_{2}' + \tau_{2}')\right] + \frac{c}{(f_{1} - f_{2})} \left[f_{1}(\tau_{1}' + \tau_{2}') - f_{2}(\tau_{2}' + \tau_{2}')\right] + \frac{c}{(f_{1} - f_{2})} \left[f_{1}(\tau_{1}' + \tau_{2}') - f_{2}(\tau_{2}' + \tau_{2}')\right]$$

$$P_{s} = \rho + \frac{1}{(f_{1} - f_{2})} \left(\frac{f_{2} - f_{1}}{f_{1} f_{2}}\right) I + \frac{c}{(f_{1} - f_{2})} \left[(f_{1} \tau_{1}^{r} - f_{2} \tau_{2}^{r}) + (f_{1} \tau_{1}^{r} - f_{2} \tau_{2}^{r})\right] + \frac{1}{(f_{1} - f_{2})} (f_{1} \varepsilon_{p_{1}} - f_{2} \varepsilon_{p_{2}})$$

$$P_{5} = \rho - \frac{1}{f_{1}f_{2}}I + \frac{c}{(f_{1} - f_{2})}[(f_{1}\tau_{1}' - f_{2}\tau_{2}') + (f_{1}\tau_{1}' - f_{2}\tau_{2}')] + \frac{1}{(f_{1} - f_{2})}(f_{1}\varepsilon_{P1} - f_{2}\varepsilon_{P2})$$

Hardware delay term

Noise term

Melbourne-Wubbena Linear Combination

$$MWLC = \lambda_{5}n_{5} + \frac{c}{(f_{1} + f_{2})}[(f_{1}\tau_{1}^{r} + f_{2}\tau_{2}^{r}) + (f_{1}\tau_{1}^{r} + f_{2}\tau_{2}^{r})] + \frac{1}{(f_{1} + f_{2})}(f_{1}\varepsilon_{p_{1}} + f_{2}\varepsilon_{p_{2}}) + \frac{1}{(f_{1} - f_{2})}(f_{1}\varepsilon_{L_{1}} - f_{2}\varepsilon_{L_{2}})$$

$$Hardware delay term$$

$$Gode observable noise$$

$$Phase observable noise$$

Noise term

$$\frac{f_1}{f_1 - f_2} \approx 4.529 \qquad \frac{f_2}{f_1 - f_2} \approx 3.529$$
$$\frac{f_1}{f_1 - f_2} \approx 0.562 \qquad \frac{f_2}{f_1 + f_2} \approx 0.438$$

For assumption like L5 and P5, So

Code observable noise $\sigma(\varepsilon_{p_{p_{max}}}) = \sqrt{(0.562)^2 + (0.438)^2} \sigma(\varepsilon_{p_1}) \approx 0.7 \sigma(\varepsilon_{p_1})$ Phase observable noise $\sigma(\varepsilon_{LS}) \approx 5.75 \sigma(\varepsilon_{L1})$

Melbourne-Wubbena Linear Combination

***MWLC is useful to detect cycle slip of phase observable data.