

An integrated Wake Vortex Visualization Concept for existing Cockpit Display Systems

T. Feuerle

S. Schönhals, C. Pätzold, S. Kocks, S. Bode, P. Hecker

2nd ENRI Int. Workshop on ATM/CNS (EIWAC) 2010, Tokyo

Content

- Motivation
- Simulation Environment
- Wake Vortex Awareness System (WVAS)
- Conclusion and Outlook

Motivation

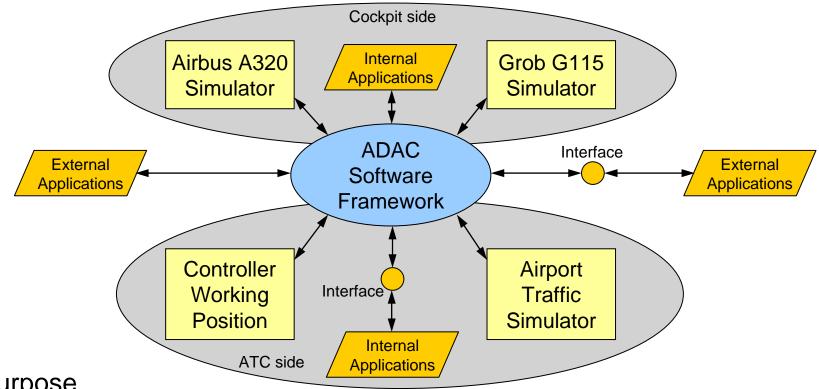
- Current forecasts predict a heavy growth in air traffic worldwide
- Air transport network almost reached its capacity limit
- Bottlenecks
 - Heavy workload of air traffic controllers
 - Runway layout and interdependencies between different runways
 - Complex taxiway system
 - Spatial and environmental restrictions
 - Conservative wake vortex separations
 - .

Motivation

- Current forecasts predict a heavy growth in air traffic worldwide
- Air transport network almost reached its capacity limit

Bottlenecks

- Heavy workload of air traffic controllers
- Runway layout and interdependencies between different runways
- Complex taxiway system
- Spatial and environmental restrictions
- Conservative wake vortex separations
- ...


Simulation Environment

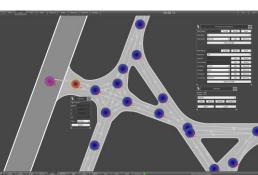
- To obtain the required capacity and efficiency
 - Change of current operational procedures
 - Development and integration of new ATM concepts and technologies
- Future ATM concepts
 - Imply more complex avionics and a higher degree of automation
 - Provide an immense amount of information to the controllers and pilots
- Human-Machine Interface (HMI) design has to meet high standards in terms of usability and interpretability
- Validation and evaluation
 - Essential part of the development process
 - Testing in real environment might be complicated and cost-intensive
 - \rightarrow Simulation is an alternative approach

Simulation Environment – Overview

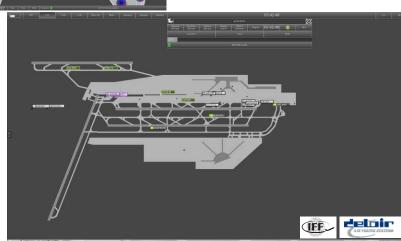
- Purpose
 - Education
 - Demonstration of existing and future ATM concepts and operational procedures
 - Research activities within national and international projects

Simulation Environment – A320 Simulator

- System simulation
 - Proprietary software package
 - Cockpit displays, switches, levers, electronics, hydraulics, ...
 - Fixed-based
 - Triple-channel external view
 - Viewing angle > 180°
- Architecture
 - Overall system runs on nine computers
 - Allows replacement of individual modules

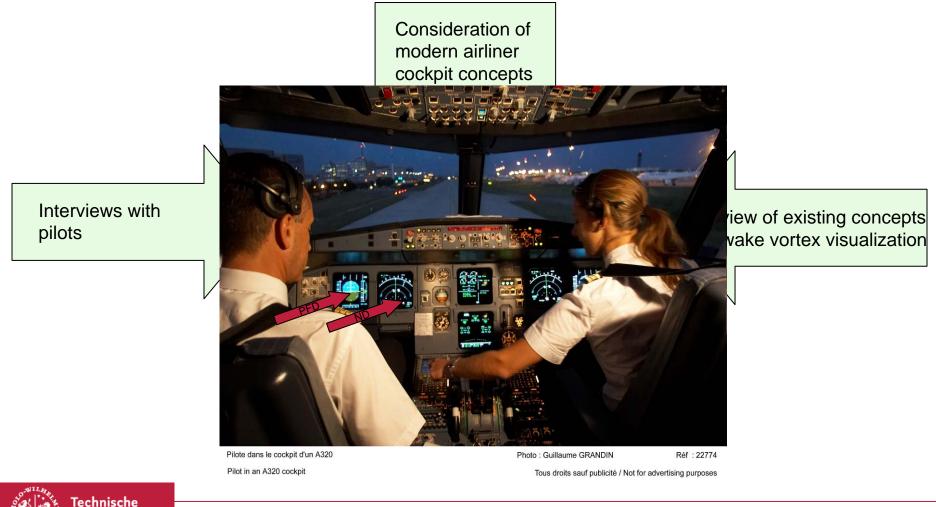

Technische Universität Nov Braunschweig

Simulation Environment – Further components


 Second aircraft: Cockpit of GA aircraft (Grob G115)

Airport Traffic Simulator

 Apron Controller Working Position


Wake Vortex Awareness System – Overview

- Wake turbulence is a result of lift
- Wake vortex encounter can lead to catastrophic consequences
- ICAO separation regulations
 - Based on maximum take-off weight
 - Have proved to be safe, but are very conservative
 - → Limit capacity and have a significant impact on economic efficiency of commercial airlines
- Possible approach
 - Delegation of separation responsibility to the flight crew
 - \rightarrow Safe operation must still be guaranteed
 - \rightarrow Visualization of potential hazardous wake vortex traffic

WVAS - Considered Aspects for Display Design

November 11, 2010 | EIWAC2010 | Thomas Feuerle | 10

Universität

Braunschweig

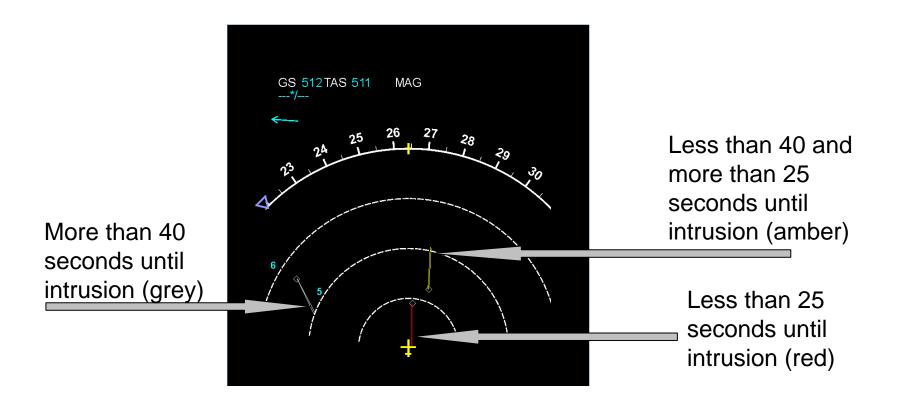
WVAS - Considered Aspects for Display Design

Conclusion:

The display should...

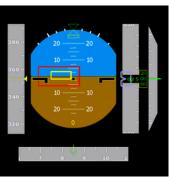
- contain only absolutely necessary information
- be placed in the focus of the pilot
- not cover or distract from other indicators
- ➢ fit into the design concept of airliner cockpits
- not look too similar to other indicators to prevent mistake
- be easy to understand

WVAS - Concept of the Wake Vortex Awareness System


- Integration of the display in the ND and PFD
- Indicating in the PFD only in dangerous situations (wake vortex encouter in less then 40 seconds possible)
- Indicating in the ND only if selected by pilot or in dangerous situations
- Symbols, colors and warning steps according to windshear warning system and TCAS
- > No resolution advisory, only information
- No detailed depiction of the wake vortex, only a danger zone which must not be encountered

WVAS - Concept of the Wake Vortex Awareness System

Indication on the ND



WVAS – Concept of the Wake Vortex Awareness System

- Warning levels
 - Each danger zone is assigned to one warning level
 - Overall operating status equates to the most critical warning level

Warning Level	Display on ND	Display on PFD	Acoustic Warning
NORMAL $(t_{WV} > 40s)$	No display or white polygon if requested by the pilot	_	_
$\frac{\text{CAUTION}}{(25\text{s} < \text{t}_{\text{WV}} \le 40\text{s})}$	Amber polygon	Amber rectangle	WAKE AHEAD played once
$\frac{\text{WARNING}}{(t_{WV} \le 25s)}$	Red polygon	Red and amber rectangle	WAKE played repeatedly

WVAS – Wake Vortex Determination

- Graphical depiction of wake vortices requires real-time information about the temporal evolution of their strength and position
- Wake vortex determination
 - Physical detection by dedicated sensors
 - Prediction by mathematical models
 - Fusion of sensor and model data
- Used prediction model
 - D2P algorithm [1][2]
 - Based on physical principles underlying the wake evolution mechanism calibrated with empirical data
 - Effects of wind, stratification and ground proximity are taken into account
 - Model inputs: weather data and aircraft parameters

 Holzaepfel, F., Probabilistic two-phase wake vortex decay and transport model, Journal of Aircraft, Vol. 40, No. 2, American Institute of Aeronautics and Astronautics, 2003, pp. 323-331.

[2] Holzaepfel, F., Probabilistic two-phase aircraft wake-vortex model: further development and assessment, Journal of Aircraft, Vol. 43, No. 3, American Institute of Aeronautics and Astronautics, 2006, pp. 700-708.

WVAS – Evaluation

- First tests with pilots of commercial and general aviation
 - Investigate usability aspects
 - Analyze potential increase in situational awareness
 - Mission
 - Extended final approach on research airport Braunschweig-Wolfsburg, Germany
 - Preceding aircraft acted as wake turbulence generator
- HMI concept was considered useful and intuitive
 - Especially visualization in the ND
- Further development
 - Visualization of only one rectangle in the PFD in case of warning mode
 → Wake vortex trajectory is already displayed in the ND
 - Simultaneous use of amber and red rectangles
 → Might lead to misinterpretation

Conclusion and Outlook

- Modular ATM simulation environment
 - Airbus A320 and Grob G115 cockpit simulator
 - Airport traffic simulator
 - Controller working position
 - Support of data exchange and HMI creation
- Integrated applications
 - Wake Vortex Awareness System (WVAS)
 - Taxi Guidance Application
- Next steps:
 - Integration of WVAS into the research aircraft of IFF
 - Development and integration of further onboard assistance systems into the simulation environment (e.g. GBAS based Wake Vortex avoidance procedures)

Thank you for your attention!

