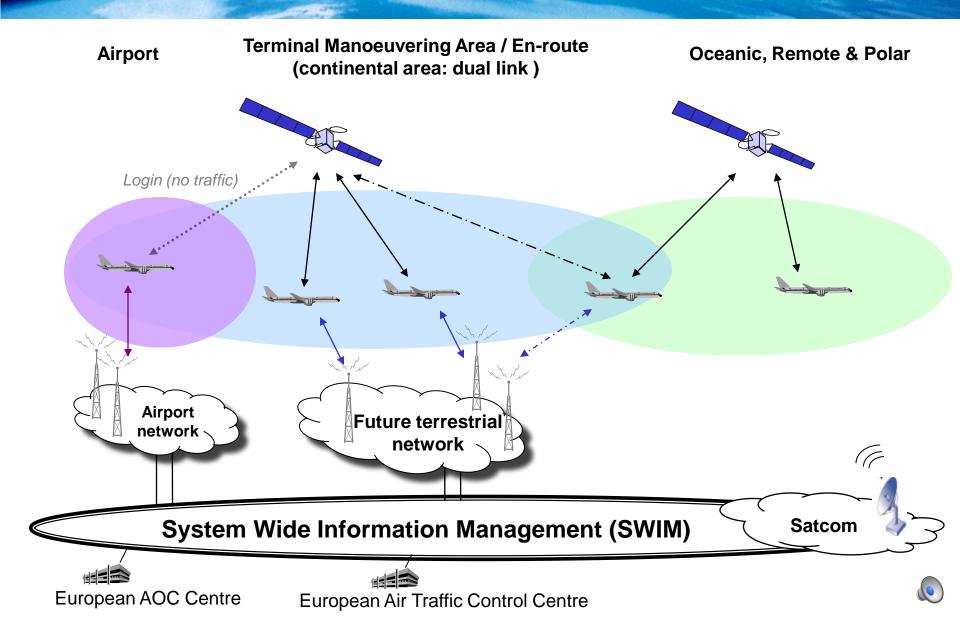


The ESA Iris Programme: a new satellite communication system for Air Traffic Management


EIWAC, Tokyo – 12 Nov. 2010

ESA Iris Programme: activities status

What is the Iris Programme?
 Requirements and hypotheses
 Next steps

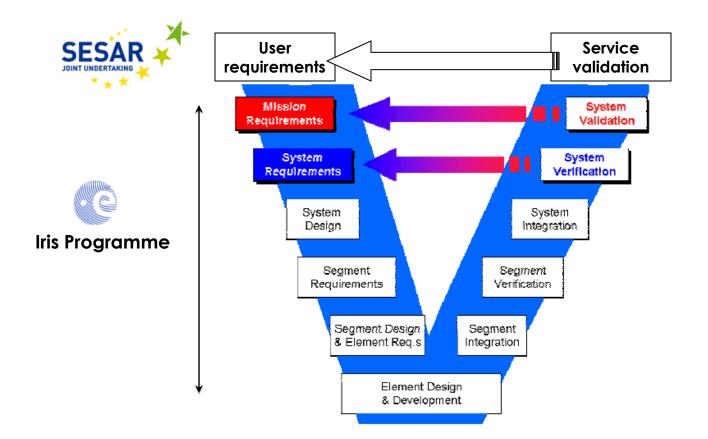
Satellite Communications services in SESAR Continental airspace + oceanic

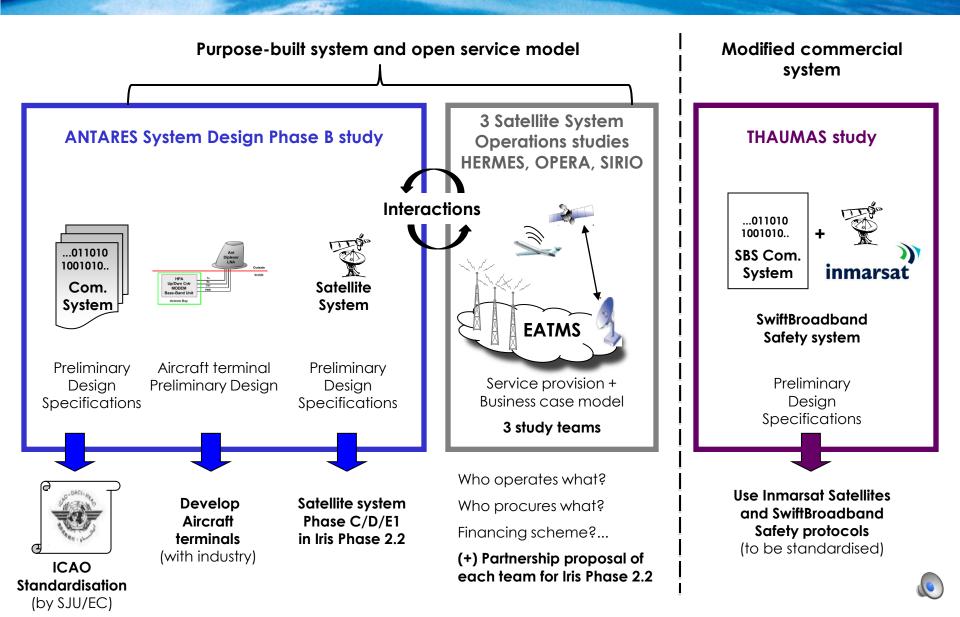
Dedicated ESA programme to support SESAR under the umbrella of ESA's ARTES programme (ARTES 10), named "Iris":

- Commitment of ESA Member States in Sept. 2007
- Definition Phase (Phase 1) completed in Jan. 2009
- Development Phase (Phase 2) approved by ESA Member States in Nov.2008, with funding committed for Phase 2.1 until 2011

Budget of Phase 2.1 is ca. **EUR 40m** (2009 economic conditions)

12 Participating States:

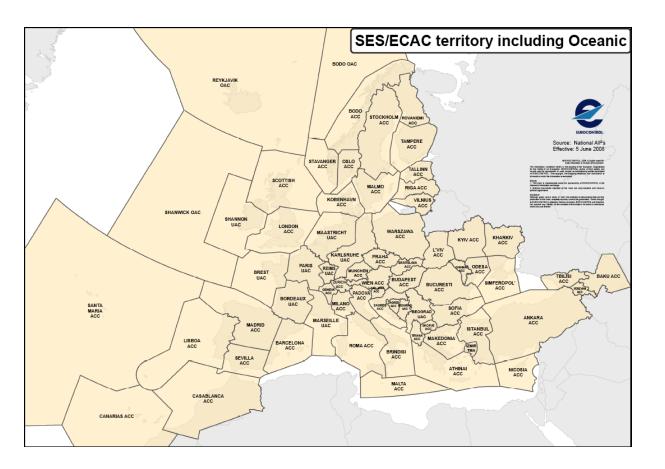

Austria, Czech Republic, France, Germany Ireland, Italy, Norway, Portugal, Luxemburg, Spain, Switzerland, UK


ESA Iris Programme

- User requirements are being defined by SESAR JU
- ESA translates them into system requirements, carries out design, development and verification (i.e. under ESA funding)
- SESAR will carry out the service validation end-to-end

Requirements and hypotheses for the system design

Design of options to face main uncertainties on system-level requirements from SESAR:

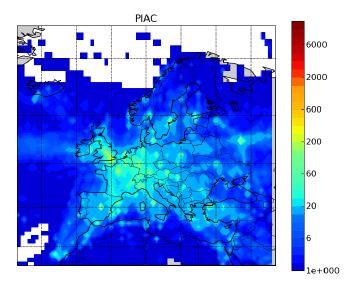

- 1 Security requirements with regards to the protection of the data transmitted via the satellite system
- 2 Security with regard to the transmission of the signal i.e. robustness to intentional and unintentional jamming
- 3 Capacity of the satellite system in terms of amount of user data traffic on forward and return links at peak times of use
- 4 Capabilities of the aircraft terminal in terms of power available while still operating without forced-air cooling;
- 5 Architecture of the ground segment: several service providers with distribution of elements, or concentration under a single entity

Service Provision requirements: geographical area

Iris focus on SES/ECAC service area but the communication system is foreseen to become a worldwide standard (ICAO standardisation) so that other world regions could implement compatible systems using the very same terminals on-board aircraft

Possible extensions of coverage considered in Iris studies:

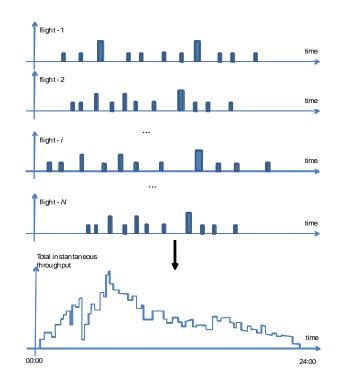
- Visible Earth from GEO orbit


- Northern latitudes areas by agreement with other countries operating HEO satellite systems

Information throughput requirements: ATS and AOC messages as in COCRv2

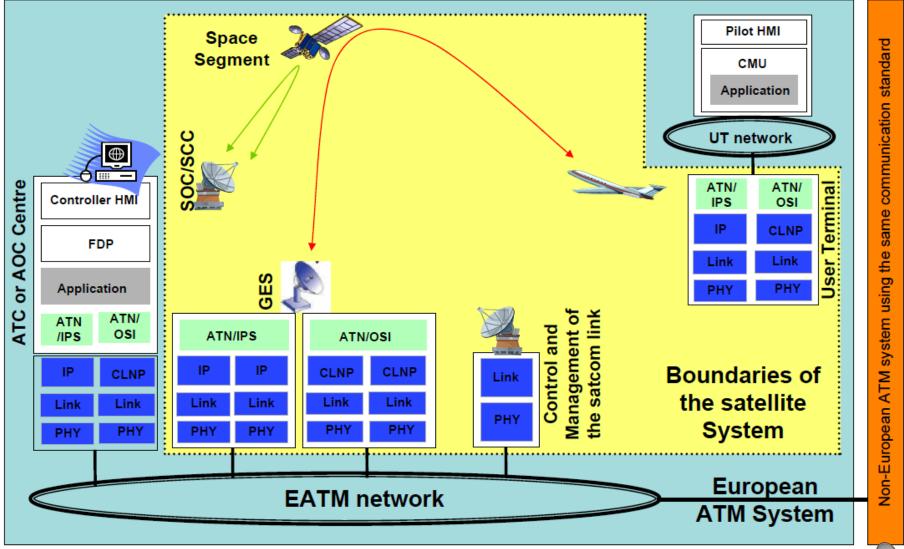
Aircraft fleet

Air Traffic density in 2025 (cf.Eurocontrol Long Term Forecast)



=> Peak capacity requirements for ECAC:

- •4.6 Mbps on the Forward Link
- •0.8 Mbps on the Return Link


Communication traffic model

Communication pattern (ATS & AOC messages cf. COCR) of all aircraft flying simultaneously is combined to derive the Information throughput

6

Boundaries of Communication System Design

TM/TC link
ATM applications

esa

- Detailed design is on-going until end 2010; the following elements have been selected so far:
 - LDPC code with several block lengths (under definition as well as interleaving strategy) and code rates
 - Linear modulations (min QPSK and 8PSK, might be more); option for variability and adaptivity to be in the CS as option
 - Encapsulation GSE-like with likely use of a CRC
 - TDMA-based access scheme to allow several GES to access the same frame for spectrum and satellite payload amplification
 - Likely no ARQ (TBC as might be needed for some QoS)

Some decisions are still open and choices may not be based only on technical (performances) results:

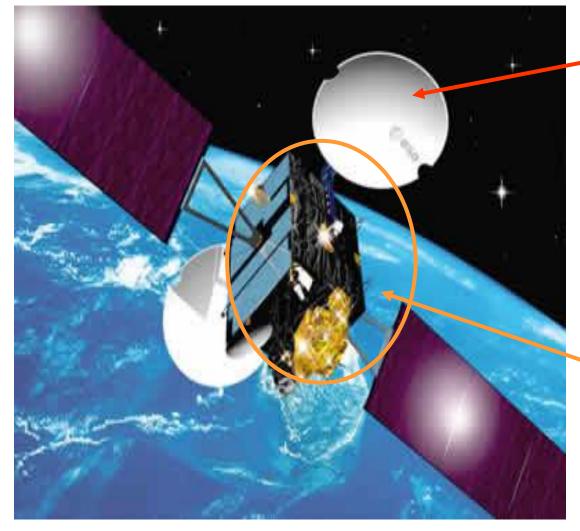
- Encapsulation RGSE-like with likely use of a CRC
- Likely ARQ for most or all traffic (TBC cf random access choices)
- Option for variability and adaptivity of the modulation (TBC)
- Joint modulation and access optimisation is on-going with 2 choices:
 - **MF-TDMA** with advanced constant envelope modulations and eBCH code
 - A-CDMA with linear modulations and turbo-code Note: non-binary LDPC could be an attractive alternative on a pure performance basis but there are many doubts on their implementation

Detailed design is on-going until end 2010, notably:

- Definition of the DAMA for accommodating multiple access (on-going)
- Handovers: detection and recommendations to be aircraft initiated except maybe for "bulk handovers" (many aircraft from one GES to another or one satellite to another)
- Compression (OSI and IP): selection of algorithms on-going
- Management plane (on-going)
- Information security: use of CRC from encapsulation but unclear if more is needed? (needs SESAR inputs of risk analysis)
- Detailed RRM design requires inputs from SESAR on CoS definitions (Inputs expected end September)

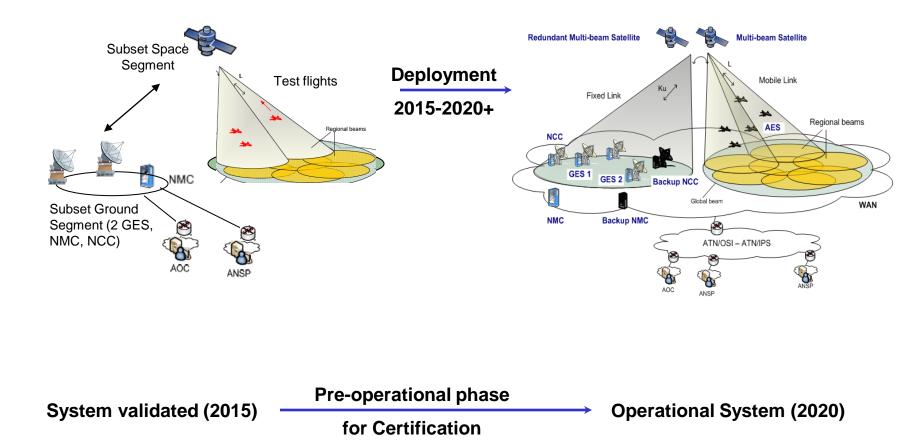
Requirements for user terminals design

- Mobile link in L-band
 - Mature, reliable, proven equipment
 - (e.g. no cause of interference)
 - Low cost


Key assumptions

- Use omni-directional aircraft antennas (suitable for all IFR aircraft)
 - Low power consumption, highly reliable, low drag
- No forced air cooling required
 - Power likely limited to 40W
- Co-primary means of communication
 - Software certification probably at level C
- User terminal developed for airliners but also General Aviation (i.e. business jets, rotorcraft, etc)
 - Probably at least two types of user terminals

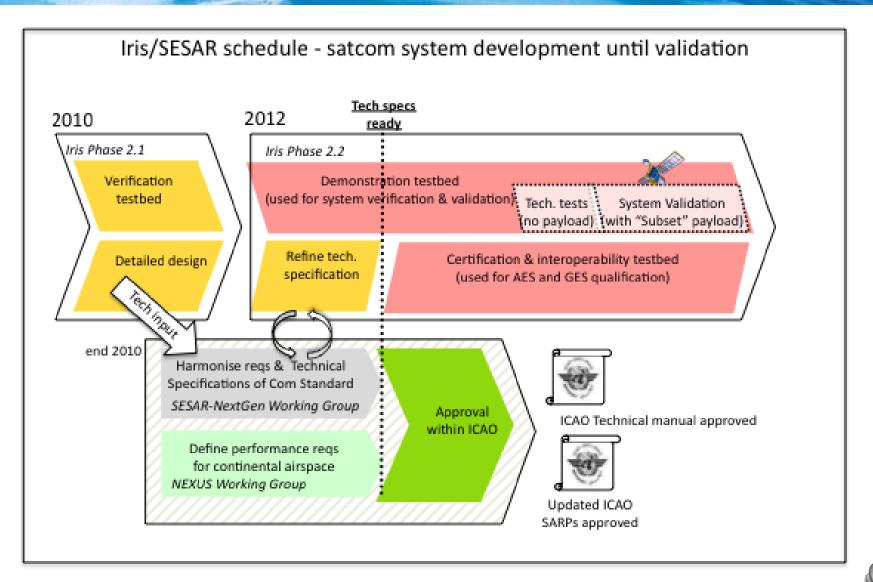
Critical parameters for the system design



The size of the antenna for the return link is driven by the user terminal peak rate ↓ Linked to application maximum acceptable delay In COCRv2

The payload mass+power is driven by the capacity on the forward link i.e. the number of aircraft communicating simultaneously

Infrastructure deployment



Next steps

COMPANY CONTRACTOR

Standardisation process

Iris - Contact Points

ESA Iris Programme

Franco.Ongaro@esa.int Nathalie.Ricard@esa.int

ESA Iris System Design Studies

Andrea.Santovincenzo@esa.int (System Engineer) Catherine.Morlet@esa.int (Communication System)

Documentation of recent public information event is available via www.telecom.esa.int/iris

Back-up: industrial teams of Iris Phase 2.1 studies

 Inmarsat: Critical review of the requirements, SwiftBroadband air interface and protocol adaptation, Validation test bed design, Decentralised ground segment design, Interoperability with ATM networks

• **Airbus**: Critical review of the requirements, AES installation requirements, Interoperability with ATM networks

• **EMS**: Critical review of the requirements, AES design requirements specification

SITA: Critical review of the requirements, Interoperability with ATM networks

• SINTEF: Air interface design, propagation modelling

• **DEIMOS**: Critical review of the requirements, Dependability & safety analysis

THAUMAS

ANTARES (1/2)

Thales Alenia Space Italia: Prime Overall System, Space Segment, RAMS, Verification Test Bed, GS external I/F

- Indra: Communication standard responsible
 Waveform, Network Synchronization, Ctrl Plane, Management Plane, Data link
- **THALESThales Avionics UK:** User Terminal Civil Aviation responsibleCA UT elements design, CA UT Proof of Concept, CA UT Prototype development

Honeywell: User Terminal General Aviation responsible GA UT elements design, GA UT Proof of Concept, GA UT Prototype development

Thales Alenia Space France: Ground Segment responsible

GS Architecture, GS Design options, GS architecture for pre-op system, GS Verification, GES design, NCC design, NMCdesign

ANTARES (2/2)

Airtel: Support for Network layer, transport layer, external networks

 $\mathbb{E}_{Aerospace}$

Aedel: Contribution to Space Segment operations

CONSULTING. TECHNOLOGY. OUTSOURCING

Capgemini Norway: Support to RAMS Analysis & Safety Case Definition

Evolving Systems Consulting: GUI & support to test Results, Satellite Emulator Definition

Commsonic

Commsonic: support to GES modem firmware development Modulator/Demodulator

DLR: Channel and Traffic model, support for Multiple access scheme (OFDMA), Channel coding and error detection (LDPC), Satellite channel emulator

Frequentis: Support to System Baseline Design for ATM aspects, Support for Network layer and Upper layers (Voice), Operational scenarios, GS operations consolidation

GMV: Support to GS Emulation (NMC&WAN and Service tool), G/S Emulation

THALES

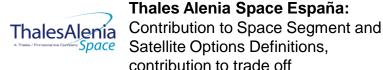
THLJ: Support to System Options and preliminary design for Security, Support to System Design for Security Aspects.

Innovationszentrum Telekommunikationstechnik GmbH

IZT: Satellite channel emulator physical layer

Iguassu: Support to Satellite channel emulator & Test Manager detalied design and development

Next: Satellite Emulator Definition and development


OHB: Small GEO Platform Accommodation Report

Space Engineering: contribution to repeater analyses, Antenna Farm RF/Electrical trade-off & initial design

Syderal: support to GES modem firmware development

Univ. Salzburg: Traffic analysis, Traffic Model, End user & AES traffic emulators

Sintef: Support for Security 24

• Inmarsat Global Limited: Prime

- Satellite Operations Impact on System Design
- Strategic Analysis
- AENA Internacional
 - Regulatory
 - Timeline
 - Responsibilities and Liabilities

ARINC

• ARINC

- Service Model
- Revenue Model

• Helios

- Business Case
- Sensitivity Analysis

HERMES

SITA: Prime Overall Management Service definition Regulatory constraints Financial impact and strategic analysis

SES-ASTRA

Definition of operations Impact of the operations on the system design Financial impact and strategic analysis

• **TELESPAZIO:** Prime - Satellite Service Provider Service model, Business case, Strategic Analysis

• EGIS AVIA: ATM Consultancy

Service Provision Analysis (Interoperability and standardisation), Certification and regulatory issues, Revenue Model

• **HISPASAT:** Satellite Operator Engineering analyses, system verification and validation activities

NATS

• NATS: ANSP consultancy Regulatory activities, service certification and validation. Interface to Regulators, Certification Issues.

• TELESPAZIO France: Service Model, Business case support

SIR