

Validation of En Route Capacity Model with Peak Counts from the National Airspace System

J. Welch and J. Andrews MIT Lincoln Laboratory

J. Post Federal Aviation Administration

11 November 2010

* This work is sponsored by the Federal Aviation Administration under Air Force Contract #FA8721-05-C-0002. Opinions, interpretations, recommendations and conclusions are those of the author and are not necessarily endorsed by the United States Government.

- Airspace capacity estimates are important
 - sector design
 - air traffic management
- Current model accounts only for 'transit' workload
 - hand-offs at sector crossings
 - New model adds key workload components
 - conflict avoidance
 - recurring tasks
- We have estimated capacities for 20 NAS* Centers
 ~ 800 sectors

Capacities differ significantly center to center Local Capacity << Inherent Capacity

- Review of Capacity Model
- Regression Process
- Center Capacities
- Conclusions

Workload grows with three critical traffic-dependent event rates

Workload Intensity

Determining the unknown service times

- Live approach

Measure controller performance

- Regression approach

Observe Peak daily counts *Np* for many sectors Calculate corresponding Model capacities *Nm*

Find service times that best fit *Nm* to *Np* bound

Conflict Workload Intensity $G_{c} = \tau_{c} [(2 N^{2}/Q) M_{h} M_{v} V_{21}]$ Global closing speed V_{21} is also unknown Fit the product $\tau_c V_{21}$ (separation lost while resolving a conflict) $\tau_c V_{21} \sim 2$ nautical miles (for NAS)

Aircraft with vertical rates cause increased uncertainty Adapt by increasing vertical miss distance M_v

- Determine fraction F_{ca} of aircraft with \geq 2000 ft altitude change
- As F_{ca} grows, increase M_v linearly from 1000 ft to M_{vmax}

20101111 EN-012 Slide 7 JDW Gp. 42

- Review of Capacity Model
- Regression Process
- Center Capacities
- Conclusions

Peak Daily Counts (790 NAS Sectors)

20101111 EN-012 Slide 9 JDW Gp. 42

Peak Daily Counts and Fitted Capacities

(790 NAS Sectors, July-August 2007)

20101111 EN-012 Slide 10 JDW Gp. 42

Difference between Peak Count N_p and Model Capacity N_m

20101111 EN-012 Slide 11 JDW Gp. 42

Difference between Peak Count N_p and Model Capacity N_m

20101111 EN-012 Slide 12 JDW Gp. 42

Difference between Peak Count N_p and Model Capacity N_m

20101111 EN-012 Slide 13 JDW Gp. 42

Difference between Peak Count N_p and Model Capacity N_m

20101111 EN-012 Slide 14 JDW Gp. 42

Fitted Capacities versus Peak Counts

(790 NAS Sectors July – August 2007)

20101111 EN-012 Slide 15 JDW Gp. 42

Regression Process

- Center Capacities
- Conclusions

Peak Sector Counts, Seattle Center (ZSE)

ZSE Sector Capacity from ZSE Regression

ZSE Sector Capacity from NAS Regression

- Local center capacities differ significantly
- Meaningful capacity comparisons must normalize for
 - center size
 - sector count

Normalized capacity density

$$K_{\rm NC} = \Sigma_{\rm CS} / Q_Z / N_{\rm S}$$

 Σ_{CS} = Sum of local capacities of all sectors

 Q_z = Center airspace volume (10,000 nmi³)

 $N_{\rm S}$ = Sector count

(K_{NC} for Seattle is 0.11 aircraft per 10,000 nmi³)

Peak Counts Washington DC Center

20101111 EN-012 Slide 21 JDW Gp. 42

Peak Counts Washington DC and Miami Centers

20101111 EN-012 Slide 22 JDW Gp. 42

Normalized Capacity Density NAS En Route Centers (July – August 2007)

Sector Capacity

$$N_m = \frac{-b + \sqrt{b^2 - 4ac}}{2a}$$

where

- $a = 5.4(1+0.6 F_{ca})/Q$, b = (a + 0.013 + 13/T), c = -0.7
- F_{ca} = fraction of daily sector flights with \geq 2000 ft altitude change
- Q (nm³) = sector volume based on min and max daily altitudes
- T(s) = mean transit time for aircraft in sector at time of peak

- NAS regression provides inherent sector capacity
- Individual center regressions provide local sector capacity
 - can be significantly less than inherent capacity
- Peak count data reflect wide range of
 - Complexity
 - Demand
 - Airspace characteristics
- Single set of capacity parameters cannot capture current operations
 - Individual center regressions necessary
- July August 2007 peaks do not give peak demand for all Centers
 - Southern operations peak in winter
- We plan to refine capacity calculations
 - Choose actual peak demand periods for all centers
 - Increase data sets in all regressions

End

MIT Lincoln Laboratory