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Abstract In this paper, it is shown that it is possible to use multiple-input multiple-output (MIMO) spatial multiplexing systems
in aeronautical communications over an extended range even in the presence of a strong line-of-sight (LOS) component. Results
originally derived to maximize the MIMO capacity in fixed range applications dominated by a LOS component is exploited
to show that a high rank channel matrix may not only be offered for a fixed distance but can be maintained over an extended
range and area in a MIMO ground-to-air communication system with nT = 2 transmit antennas (ground terminal) and nR ≥ 2
receive antennas (aircraft). Numerical results are presented for an nR × nT MIMO system in a Ricean fading channel assuming
communication between a ground terminal and an aircraft in the en-route domain.
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1. INTRODUCTION
The introduction of multiple-input multiple-output

(MIMO) systems has contributed to vast improvements
in capacity and reliability in wireless communications.
MIMO systems thrive in rich multipath environments,
since it leads to antenna decorrelation and a high rank
channel matrix.1 In these conditions, a MIMO sys-
tem can offer a linear increase in capacity that is pro-
portional to the minimum number of transmit and re-
ceive antennas. As a result, the majority of research
on MIMO communications have been focused on sys-
tems operating in a rich multipath environment.

MIMO signalling techniques are currently been
considered for future aeronautical communication sys-
tems within Europe and the United States. In partic-
ular, the future airport datalink system AeroMACS
will be based on IEEE802.16 technology involving
MIMO, and aeronautical satellite communications con-
sider introducing MIMO techniques for use in high
latitudes and for low satellite elevation angles.

A more theoretical approach to improve the per-
formance of future aeronautical communication sys-
tems by increasing the capacity and reliability in air-
to-ground links has been proposed in [1]. Aeronau-
tical channels are typically Ricean fading channels,
characterized by the presence of a strong line-of-sight
(LOS) component. A LOS component will usually re-
duce the performance of a MIMO system, since there
is a large probability that all the signals will be con-
veyed through the same channel. Effectively, it means
that the MIMO channel matrix in a LOS environment
becomes rank-deficient (not full rank). This reduces

1In some cases, the channel matrix may still be of rank one
even though the antennas at both ends are uncorrelated. Such a
MIMO channel is commonly called a ”pinhole” channel.

the spatial multiplexing gain of the system since sev-
eral data streams can be separated by an equalizer
only if the fading processes of the spatial channels are
(nearly) independent.

A possible solution to this challenge was indicated
in [2], stating that a linear increase in capacity could
be achieved by increasing the distance between the
antennas at the transmitter to produce antenna pat-
terns with nulls on all but one receiver antenna. By
this approach, independent channels on the same car-
rier frequency could be established. A similar tech-
nique was indicated in [3, Sec. III].

Motivated by the results in [2] and [3], the au-
thors in [4] and [5] propose a design methodology to
achieve a full-rank MIMO channel matrix in a LOS
environment. It is shown that orthogonality between
subchannels of the channel matrix can be related to
the product of the inter-element spacings of the anten-
nas at the transmitter and receiver, assuming uniform
linear array (ULA) antennas at both ends. They both
introduce more general geometrical models than that
applied in earlier works to gain additional insight, in
particular to quantify a reduction from optimal per-
formance caused by misalignment between the trans-
mitter and receiver antenna arrays. In [4], the perfor-
mance is evaluated with respect to both ergodic and
outage capacity using a Ricean fading channel model.
The results show that even with some deviations from
an optimal design, a LOS MIMO system may outper-
form a system operating on independent and identi-
cally distributed (i.i.d.) Rayleigh fading channels in
terms of Shannon capacity.
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The results presented in [4] and [5] have contri-
buted to create new interest in the use of spatial mul-
tiplexing in environments with a strong LOS compo-
nent. Notably, results have been presented in recent
publications on fixed wireless access schemes [6], in-
door communication [7], and vehicle-to-roadside com-
munication [8]. However, to the author’s knowledge,
no one has yet looked into the use of the results for
aeronautical communications. Hence, in this paper,
the theoretical results in [4] are re-visited but viewed
from an aeronautical perspective, where the range now
is variable rather than fixed. Note however that the
particular view of a variable range is not original to
this paper, since it has been addressed to some extent
in small range applications [7–9]. In particular, it is
shown in [7] that a MIMO system operating in a LOS
environment may be used over a larger set of ranges
by using optimized nonuniform antenna arrays rather
than uniform antenna arrays.

In this paper, a MIMO system which involves a
ground terminal with 2 antennas and a ULA antenna
mounted on the aircraft wings is proposed. The chan-
nel capacity of such a system is quantified and pre-
sented as a function of range and angle between the
ground antenna array and the aircraft antenna array.
Numerical results show that the channel matrix may
be kept at full rank in a LOS environment over an
extended range, which is essential to accommodate
MIMO communication in the en-route domain.

The paper is organized as follows. In Section 2,
the system and channel model is presented. Then, for
clarity, information theoretic results on the channel
capacity of a MIMO system are reviewed in Section
3. In Section 4, numerical and analytical results that
quantify the performance of a MIMO system operat-
ing in a LOS environment are presented. The conclu-
sions of the paper are presented in Section 5.

2. CHANNEL MODEL
Using complex baseband vector notation, the in-

put/output relations of a narrowband single user MIMO
link with nT transmit antennas and nR receive anten-
nas can be written as

y =
√
ΩHx + n, (1)

where y ∈ C
nR×1 is the received signal vector, x ∈

C
nT×1 is the transmitted signal vector, H ∈ C

nR×nT is
the channel matrix, Ω is the common power attenua-
tion factor for all the channels in the channel matrix,
and n ∈ C

nR×1 is an additive noise vector containing
i.i.d. circularly symmetric Gaussian elements with
zero mean and variance σ2 (in short CN(0, σ2)).2 As
in [10], H represents a normalized channel matrix,
which means that all entries of the matrix have unit

2A circularly symmetric complex Gaussian random variable
with zero mean and variance σ2 is a complex random variable x +
jy, where x and y are independent and normally distributed with
zero mean and variance σ2/2.

average power. The path loss for all subchannels is
accounted for by the common parameterΩ. This nor-
malization is convenient since it makes the average
signal-to-noise ratio (SNR) independent of H.

A general entry in H is denoted hm+1,n+1, repre-
senting the complex channel gain between transmit
antenna n ∈ {0, 1, . . . , nT − 1} and receive antenna
m ∈ {0, 1, . . . , nR − 1}. The channel matrix may then
be written as

H =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
h1,1 h1,2 . . . h1,nT

h2,1 h2,2 . . . h2,nT

...
...

. . .
...

hnR,1 hnR,2 . . . hnR,nT

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ . (2)

For simplicity (and later reference), it can also be pre-
sented in terms of its individual column vectors hn as

H =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣ | | |
h0 h1 . . . hnT−1

| | |

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦ . (3)

In the en-route domain, the aeronautical channel
is commonly characterized as a fast fading (rapidly
time varying) channel where the amplitude of the re-
ceived signal follows a Rice distribution [11]. In this
case, the MIMO channel matrix in (2) may be written
as a sum of two parts, a deterministic part (LOS com-
ponent) and a Rayleigh fading part (Non-LOS (NLOS)
component):

H = aHLOS + bHNLOS. (4)

The power ratio of the two matrix components defines
the Rice factor as K = a2/b2, which commonly is
expressed in decibels as K = 10 log10

(
a2

b2

)
dB. In the

following, it is assumed that the sum power of the
components is normalized, i.e. a2 + b2 = 1. With this
assumption, a and b can be expressed in terms of the
Rice factor as a =

√
K/(K + 1) and b =

√
1/(K + 1).

For simplicity, a flat fading channel is assumed,
which means that the channel impulse response of
each subchannel in the channel matrix consists of one
tap only (thus no inter-symbol interference). In addi-
tion, since the channel capacity subsequently is used
as a measure to quantify the performance, coherent
detection with perfect channel knowledge at the re-
ceiver is assumed throughout the paper. In practice,
perfect channel knowledge is not possible in a rapidly
time varying channel, so the results of this paper will
only serve as performance upper bounds. 3

3In [12], performance degradation of basic modulation
schemes in a rapidly time varying channel using a first order au-
toregressive channel model is presented.

302



ENRI Int. Workshop on ATM/CNS. Tokyo, Japan (EIWAC2010)

2.1. LOS channel
The matrix HLOS represents the transfer function

for signals that have traveled from the transmitter to
the receiver by a direct path. As a result, it is a de-
terministic matrix since all the entries only depend on
the distance between the transmit and receive antenna
elements. The entries of HLOS can then in general be
expressed as

hm+1,n+1 = exp ( jβrmn) , (5)

where β = 2π/λ is the wave number, λ is the wave-
length of the transmitted signal, and rmn is the direct
path length between transmit antenna n and receive
antenna m. In this paper, the expression for rmn is
identical to [4, Eq. (7)], which is based on the ge-
ometrical model depicted in Fig.1. It shows a gen-
eral MIMO system with ULA antennas at both ends
of the link. This means that the inter-element dis-
tance between adjacent antennas in each of the ar-
rays is fixed. The antenna inter-element distance at
the transmitter and receiver are denoted dt and dr, re-
spectively. With nT transmit antennas and nR receive
antennas, the total length of the transmitter array be-
comes (nT−1)dt, while the length of the receiver array
becomes (nR − 1)dr. The distance (or range) between
the transmitter and receiver is denoted R, and it is de-
fined to be the distance between the lower end of the
two arrays. Finally, the ULAs are not restricted to
be parallel, and the angles θt, θr , and φr are used to
model the impact of arbitrary orientations. Based on
the geometry in Fig.1, the distance rmn in (5) can be
expressed as [4, Eq. (7)]

rmn ≈ R + mdr sin θt cosφr − ndt sin θt

+
(mdr sin θr sinφr)2

2R

+
(mdr cos θr − ndt cos θt)2

2R
. (6)

The approximation sign in (6) is used as a reminder
that the result is valid only when R is much larger
than the transmit and receive antenna dimensions.

2.2. NLOS channel
The matrix HNLOS represents the transfer function

for signals that are received as a result of reflection,
diffraction and scattering from the environment. The
combined reception of such signals are commonly mod-
eled by a stochastic process. As in [10], the entries
of HNLOS are modeled as circular symmetric complex
Gaussian random variables with zero mean and vari-
ance σ2

h. Hence,

hm+1,n+1 ∼ CN
(
0, σ2

h

)
. (7)

Since the individual channel gains in this case will
be Rayleigh distributed, HNLOS is commonly referred
to as a Rayleigh fading matrix. To keep the matrix

normalized, it is assumed that σ2
h = 1. Since the aero-

nautical channel is a rapidly time varying channel, it
is assumed that HNLOS is memoryless, i.e. for each use
of the channel and independent realization of H NLOS is
drawn.

3. CHANNEL CAPACITY
The channel capacity is a measure of the amount

of information which can be transmitted and received
with a negligible probability or error. With a uniform
power distribution among the transmit antennas, the
channel capacity of a MIMO system is equal to

C = log2

[
det

(
IM +

γ

nT
W

)]
bit/s/Hz, (8)

where M = min{nR, nT }, IM is the M × M identity
matrix, γ = ΩPT

σ2 is the average received SNR, PT is
the total average transmit power,4 and

W =
{

HHH, nR < nT

HHH, nR ≥ nT
(9)

is the channel covariance matrix. The superscript H

in (9) denotes Hermitian transpose. Note that (8) is
valid only for a given channel realization. When H is
stochastic, C becomes a random variable and the er-
godic channel capacity (mean capacity over all chan-
nel realizations for a given average SNR) can be ob-
tained as C = EH(C).5

Using the matrix notation introduced in (3) and
assuming nR ≥ nT , the covariance matrix W can be
expressed as

W =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
hH

0 h0 hH
0 h1 . . . hH

0 hnT−1

hH
1 h0 hH

1 h1 . . . hH
1 hnT−1

...
...

. . .
...

hH
nT−1h0 hH

nT−1h1 . . . hH
nT−1hnT−1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ .
(10)

Using eigenvalue decomposition on W, (8) may alter-
natively be written as [14]

C =

rω∑
i=1

log2

(
1 +

γ

nT
ωi

)
,

= log2

⎛⎜⎜⎜⎜⎜⎝ rω∏
i=1

(
1 +

γ

nT
ωi

)⎞⎟⎟⎟⎟⎟⎠ , (11)

where {ωi}Mi=1 are the eigenvalues of W, and rω ≤ M
is the rank of W (or H).

4For a pure Rayleigh fading channel, an uniform power distri-
bution is optimal in the sense that it maximizes the capacity, but
this is generally not the case for a Ricean fading channel. However,
a uniform power distribution is asymptotically optimal as the SNR
tends to infinity if nR ≥ nT [13].

5EH (·) denotes the expectation over all channel realizations.
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R

θt θr

origo

(nT − 1) · dt

z z
′

φr
x
′x

y
′

(nR − 1) · dr

Tx Rx

Figure 1 A general MIMO system with uniform linear arrays at both the transmitter and the receiver [4, Fig. 1].

Table 1 List of the eight first Chebyshev polynomials
of the second kind.

nR UnR−1(cos x)

1 1

2 2 cos x

3 4 cos2 x − 1

4 8 cos3 x − 4 cos x

5 16 cos4 x − 12 cos2 x + 1

6 32 cos5 x − 32 cos3 x + 6 cos x

7 64 cos6 x − 80 cos4 x + 24 cos2 x − 1

8 128 cos7 x − 192 cos5 x + 80 cos3 x − 8 cos x

In the following, it will be focused on the matrix
HLOS since the overall rank of H in a strong LOS envi-
ronment in general will be dominated by the rank of
HLOS. As such, it is convenient to define the associated
LOS version of (9) as K → ∞ (pure LOS channel).
In this case, the channel covariance matrix can be de-
fined as

M =
{

HLOSHH
LOS, nR < nT

HH
LOSHLOS, nR ≥ nT

. (12)

The capacity may then be expressed as

C = log2

⎛⎜⎜⎜⎜⎜⎝ rλ∏
i=1

(
1 +

γ

nT
λi

)⎞⎟⎟⎟⎟⎟⎠ , (13)

where {λi}Mi=1 are the eigenvalues of M, and rλ ≤ M is
the rank of M (or HLOS).

From (13), it is observed that the rank of M plays
an important part in maximizing the capacity of a MIMO
system. A MIMO system thrives in a rich multipath
environment since it contributes to realize a high rank
channel matrix. However, when a strong LOS com-
ponent is present, HLOS becomes rank deficient since
all the signals then are conveyed through the same

channel. Hence, in order to exploit MIMO spatial
multiplexing techniques in a LOS channel, methods
that can contribute to increase the rank of M must
be employed. Note that the rank of a matrix usu-
ally is defined as the number of non-zero singular
values. However, when the rank of M is maximized,
the rank of HLOS is also maximized since the squared
singular values of HLOS are equal to the eigenvalues
of M. As mentioned in the introduction, the authors
in [4] and [5] have proposed a design methodology to
achieve a full rank MIMO channel matrix in a LOS
environment. With the assumption of ULA anten-
nas at both ends, the technique is to use an optimized
inter-element distance at both the transmitter and the
receiver to obtain a full rank channel matrix at a given
fixed range R. In [4], the key design parameter is
presented as the product of dt and dr, referred to as
the antenna separation product (ASP). The optimal
ASP which maximizes (13) for a pure LOS channel is
equal to [4, Eq. (12)]

dtdr =
λR

N cos θt cos θr
, (14)

where N = max(nR, nT ). When the ASP is equal to
(14), the rank of M (and HLOS) is maximized and equal
to rλ = M.

In the following, a MIMO system with nT = 2 and
nR ≥ nT will be assumed. In this case, the maximum
rank of M (or HLOS) is rλ = 2. The eigenvalues of
M for a nR × 2 MIMO system can then be expressed
compactly as (see Appendix)

λ1 = nR + UnR−1(cos x), (15)

λ2 = nR − UnR−1(cos x), (16)

where x = π
nRη

, η = λR
N cos θt cos θrdtdr

, and UnR−1(·) is a
Chebyshev polynomial of the second kind. The eight
first Chebyshev polynomials of the second kind as a
function of nR are listed in Table 1.
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The symbol η is called the deviation factor, and it
is defined in [4, Eq. (13)] as the ratio between the op-
timal ASP in (14) (in the following denoted ASPopt)
and the actual ASP, i.e.

η =
ASPopt

ASP
=

λR
N cos θt cos θrdtdr

. (17)

In [4], η is used as a measure (in dB) for how far the
actual ASP is from the optimal ASP for a fixed range
R. Hence, if η > 1, the actual ASP is too small com-
pared to the optimal value in (14). If η < 1, the actual
ASP is too large. However, once the optimal dt and dr

have been established for a fixed range denoted R opt,
deviations from Ropt will cause η to deviate from its
optimal value of one as well. Hence, in this paper,
η > 1 is used to signify a system that operates at
R > Ropt. Similarly, η < 1 signifies a system that
operates at R < Ropt. As such, η is in this paper used
as a measure for the performance of a MIMO system
as the range deviates from its optimal fixed value.

Finally, ρ is defined as the normalized correlation
coefficient between the receive array responses from
the lth and kth transmit element (l,k ∈ [0, 1])

ρ �
|hH

l hk |
‖ hl ‖ · ‖ hk ‖ =

∣∣∣UnR−1(cos x)
∣∣∣

nR
. (18)

With the aid of (15), (16) and (18), the capacity in
(13) for an nR×2 MIMO system can then be expressed
compactly in closed form as

C = log2

⎛⎜⎜⎜⎜⎜⎝1 + γnR +

(
γnR

2

)2 (
1 − ρ2

)⎞⎟⎟⎟⎟⎟⎠ . (19)

For nR = 2, (19) reduces to [15, Eq. 20].

4. GROUND-TO-AIR
COMMUNICATION

This section is divided into two parts. In the first
part, numerical and analytical results of a ground-to-
air MIMO communication system are presented for
a pure LOS channel, i.e. for HLOS only. In the sec-
ond part, similar results are presented for the com-
plete channel matrix H, which is a stochastic channel.
The numerical results in the second part are therefore
obtained by averaging over many channels realiza-
tions. In both parts, it is assumed that the transmitter
(ground terminal) is equipped with nT = 2 antennas
and the receiver (aircraft) is equipped with nR ≥ 2 an-
tennas. The distance between the two ground terminal
antennas is denoted dt, whereas the aircraft antenna
array is assumed to be an ULA with inter-element

distance dr. In the aircraft, the antennas are assumed
to be conformal antennas evenly distributed along the
aircraft wings.

For a given channel realization and a fixed num-
ber of antennas, the capacity is a function of the SNR.
The SNR is again a function of the range, since the
signal level naturally decreases as a function of range
which then effectively also reduces the SNR. How-
ever, in all the numerical results presented in this pa-
per, the SNR is kept fixed as a function of range in
order to isolate the impact of the range from the im-
pact of the SNR. Otherwise, it would be difficult to
know whether a change in the capacity is caused by a
change in the range or by a change in the SNR if they
both vary at the same time. Hence, to better visualize
the impact of a variable range on the capacity of the
system, the SNR is kept fixed as a function of range.

4.1. Part 1 - Deterministic channel
4.1.1. 2 × 2

As a reference, the capacity of a 2× 2 MIMO sys-
tem is used. In Fig.2, (19) is depicted as a function of
R when dt and dr are selected to maximize the capac-
ity at Ropt = 150km. In order to maximize the capac-
ity at such a long range, either dt, dr or both must be
quite large. For this reason, the inter-element distance
at the ground terminal is in this paper selected to be
fixed at dt = 1500m. This makes it possible to max-
imize the capacity using a comparatively small inter-
element distance in the aircraft, which is assumed to
be a commercial passenger jet. With dt = 1500m,
the capacity is maximized at Ropt = 150km with dr =

15m.
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Figure 2 Capacity of a 2× 2 system as a function of R
when λ = 0.3m (f=1.0GHz), dt = 1500m, dr = 15m,
K → ∞, γ = 10dB, and θt = θr = 0o.
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In Fig.2, it is observed that the capacity indeed
is maximized at Ropt = 150km, but it oscillates be-
tween two extremes for R < Ropt.6 The oscillation
stems from ρ in (19), which for nR = 2 is equal to
ρ = | cos π

2η |. Hence, for R ≤ Ropt (η ≤ 1), it can be
deduced that ρ is equal to

ρ =

⎧⎪⎨⎪⎩ 0 for η = 1
(2q−1)

1 for η = 1
2q

, q ∈ Z
+, q � 0. (20)

At maximum capacity, the channel matrix is a full
rank matrix (rλ = 2) since the columns of the channel
matrix are uncorrelated (ρ = 0). The capacity is then
exactly twice the capacity of a 1×1 system. Denoting
the distances where the channel matrix is full rank as
Rρ=0, it occurs at

Rρ=0 =
2 cos θr cos θtdtdr

(2q − 1) · λ , q ∈ Z
+, q � 0. (21)

At minimum capacity, the channel matrix is rank
deficient (rλ = 1) since the columns of the channel
matrix are completed correlated (ρ = 1). Denoting the
distances where the channel matrix is rank deficient as
Rρ=1, it occurs at

Rρ=1 =
cos θr cos θtdtdr

q · λ , q ∈ Z
+, q � 0. (22)

In general, the distances related to a given correlation
value between zero and one can be expressed as

Rρ =
π cos θr cos θtdtdr

λ(θ + πq)
=

π

2(θ + πq)
Ropt, (23)

where q ∈ Z
+, ρ = | cos(θ + πq)|, and

θ =

{
0 < θ < π

2 R > Ropt
π
2 ≤ θ ≤ 3π

2 R ≤ Ropt
. (24)

In Fig.3, the result of Fig.2 is reproduced but pre-
sented as function of both θr and R to visualize how
the capacity varies with respect to range and misalign-
ment between the ground and aircraft antenna. As
such, Fig.3 can be viewed as an illustration of the ca-
pacity region covered by the ground antenna for an
incoming aircraft at range R and angle θ r relative to
the ground antenna. It is assumed that θ t = 0o. Once
again, it is observed that the capacity fluctuates be-
tween two extremes given by either no correlation
(ρ = 0) or complete correlation (ρ = 1). A rela-
tively large area with a full rank matrix (white areas)

6A similar result is presented in [5, Fig. 2], but then as a func-
tion of dt and dr when R is fixed.

is observed in the area 100km ≤ R ≤ 250km and
−50o ≤ θr ≤ 50o. For distances closer than 100km,
it is necessary to change the inter-element distance
in the aircraft in order exploit MIMO spatial multi-
plexing techniques, since the correlation between the
subchannels of the channel matrix becomes too high
(dark areas).7

An option is to mount more than two antennas at
the aircraft and use a switch-based system to select
the optimal two antennas for a given range and angle.
Assuming that dr is optimal (maximizes the capacity)
at Ropt and θr = θ1, the new optimal inter-element
distance d∗r at range R and θr = θ2 is equal to

d∗r =
R cos θ1

Ropt cos θ2
dr. (25)

By adjusting the inter-element distance close to d ∗r in
a switch-based fashion as the aircraft closes in on the
ground terminal, it is possible to stay in the vicinity
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Figure 3 Capacity region of a 2 × 2 in a deterministic
LOS channel (K → ∞) as a function of θr and R.

7An additional ground terminal with a different coverage area
could be used to give coverage for θr > ±50o if antennas also could
be placed along the fuselage of the aircraft. The combined coverage
of two ground terminals will then ensure that θr in any case will be
less than ±50o .

306



ENRI Int. Workshop on ATM/CNS. Tokyo, Japan (EIWAC2010)

 

 

8 × 2

1 × 1

C
ap

ac
ity

[b
it/

s/
H

z]

R [km]

50 100 150 200 250
2

4

6

8

10
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R when λ = 0.3m (f=1.0GHz), dt = 1500m, dr =

2.14m, K → ∞, γ = 10dB, and θt = θr = 0o.
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Figure 5 Capacity region of a 8 × 2 system in a de-
terministic LOS channel (K → ∞) as a function of θr

and R.

of the maximum of the capacity curve over an ex-
tended range. However, as the aircraft comes closer
and closer to the ground terminal, the switching must
be performed faster and faster to be in correlation with
the fluctuation of the capacity curve. Hence, such an
approach is not well suited when the aircraft comes at
close range. A remedy to this challenge is explored in
the next subsection.

4.1.2. nR × 2

A simple yet effective way to increase the robust-
ness of the link in a strong LOS environment is sim-
ply to use more antennas at the receiver than at the
transmitter and exploit all available antennas at the re-
ceiver at the same time rather than using a switched-
based approach between a small subset of antennas.8

To illustrate this fact, Fig.4 shows the capacity of a
8 × 2 MIMO system. Compared to the 2 × 2 case,
it is observed that the capacity has increased as a re-
sult of the increased number of antennas in the sys-
tem. However, more importantly, the capacity curve
does not contain the oscillations observed in the 2× 2
system. Hence, the general condition nR > nT has a
stabilizing effect on the capacity curve as a function
of range, and the effect resembles the stabilizing ef-
fect which antenna diversity has on the SNR level in a
fading channel. Note that the receiver antenna length
is assumed to be fixed at the reference length of 15m.
Hence, in the 2×2 case, dt = 15m, whereas in the 8×2
case, dt ≈ 2.14m. As a result of the increased number
of antennas and the reduced inter-element distance,
Ropt is reduced to approximately 86km in the 8 × 2
case compared to 150km in the 2 × 2 case.

In Fig.5, the capacity region of the 8× 2 system is
depicted. It clearly shows the improvement from the
2 × 2 case, as there are no fluctuations of the capacity
curve in the entire range 10km ≤ R ≤ 250km. The
angle range is almost unchanged from the 2 × 2 case,
i.e. −50o ≤ θr ≤ 50o.

The increased stability of the capacity curve as a
function of range can also be observed by examining
the condition number κM of M (and HLOS). The condi-
tion number is a measure of stability or sensitivity of
a matrix (or the linear system it represents) to numer-
ical operations, and matrices with a condition number
close to one is said to be well-conditioned. The con-
dition number of M is equal to

κM =
λmax

λmin
�

nR +
∣∣∣UnR−1(cos x)

∣∣∣
nR −

∣∣∣UnR−1(cos x)
∣∣∣ = 1 + ρ

1 − ρ . (26)

The condition number of HLOS may be obtained from
κM by the following relation

κM =
λmax

λmin
=
σ2

max

σ2
min

= κ2
HLOS

, (27)

8The motivation for this particular approach comes from [7],
where numerical results illustrate the relationship between the
channel quality and the relative positions of a transmit and receiver
node in a mm-wave MIMO architecture.
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Figure 6 Condition number κM as a function of R and
nR ∈ {2, 4, 8} with θt = θr = 0o.

where σmax and σmin denote the maximum and min-
imum singular values of HLOS, respectively. Hence,
when M is well-conditioned, HLOS is well-conditioned.
Using (15) and (16), the normalized correlation coef-
ficient ρ can be expressed in terms of the condition
number as

ρ =
κM − 1
κM + 1

. (28)

From (28), it can be seen that a condition number
close to one ensures that ρ is close to zero. In Fig.6,
(26) is depicted as a function of nR and R. It is ob-
served that the range over which the condition num-
ber of M (and hence HLOS) is close to one increases as
nR increases. Basically, this means that by increasing
the number of receive antennas, HLOS may be kept at
full rank over an extended range.

4.2. Part 2 - Stochastic channel

In this part, the capacity region results of the pre-
vious section obtained with the deterministic chan-
nel matrix HLOS are compared to simulation results
obtained with the complete Rice fading channel ma-
trix H. Since H is a stochastic matrix, the simulation
results in this part are obtained by averaging over a
number of channel realizations. According to [11], a
typical Rice factor for the aeronautical channel in the
en-route domain is K = 15dB. Hence, all the simula-
tions are obtained for a Rice factor of K = 15dB. In
Fig.7 and Fig.8, the capacity regions of a 2 × 2 and
a 8 × 2 system are depicted, respectively. They both
do not differ much from Fig.3 and Fig.5 obtained in a
pure LOS channel.
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Figure 7 Capacity region of a 2 × 2 system in a Rice
fading channel (averaged of 1000 channel realiza-
tions) as a function of θr and R with γ = 10dB and
K = 15dB.
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Figure 8 Capacity region of a 8 × 2 system in a Rice
fading channel (averaged of 1000 channel realiza-
tions) as a function of θr and R with γ = 10dB and
K = 15dB.
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5. CONCLUSIONS
The results of this paper indicate that it is possible

to exploit MIMO spatial multiplexing techniques in
aeronautical communications over an extended range
even in the presence of a strong LOS component. Nu-
merical results are presented for a MIMO ground-to-
air communication system with nT = 2 transmit an-
tennas (ground terminal) and an ULA antenna with
nR ≥ 2 receive antennas (aircraft). The results show
that a high rank channel matrix may be offered over an
extended range (and area) when nR > nT , where the
range improves as nR increases. For an nR × 2 MIMO
system with nR ≥ 2, the maximum number of spatial
data pipes offered is two, and the nR receive antennas
contributes to stabilize the two data pipes in a LOS en-
vironment. Additional data pipes may be offered by
increasing the number of transmit antennas but due
to the large inter-element distance needed to obtain a
large range, systems with more than two antennas in
the ground terminal may not be very practical.

6. APPENDIX
Eigenvalues of M for an nR × 2 MIMO system

For a nR × 2 system, using [4, Eq. (7)], the differ-
ence in path length from transmit antennas l ∈ [0, 1]
and k ∈ [0, 1] to receive antenna m ∈ [0, 1, . . . , nR−1]
can be expressed as

rm,k − rm,l = (l − k)dt sin θt − (l2 − k2)
(dt cos θt)2

2R

+
dtdr cos θt cos θr

R
(l − k)m

= α +
dtdr cos θt cos θr

R
(l − k)m, (29)

where α = (l − k)dt sin θt − (l2 − k2) (dt cos θt)2

2R . The
channel matrix in (2) is simplified to

H =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
h1,1 h1,2

h2,1 h2,2
...

...
hnR,1 hnR,2

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ (30)

The individual terms of the matrix product M = HH
LOSHLOS

can then be expressed as

M =
[

hH
0 h0 hH

0 h1

hH
1 h0 hH

1 h1

]
, (31)

where

h0 =
[
e jβr0,0 , . . . , e jβrnR−1,0

]T
, (32)

h1 =
[
e jβr0,1 , . . . , e jβrnR−1,1

]T
. (33)

The inner product of the two channel vectors in (32)
and (33) can in general by written as

hH
l hk =

nR−1∑
m=0

e jβ(rm,k−rm,l)

=

nR−1∑
m=0

e jβ
(
α+ dtdr cos θt cos θr

R (l−k)m
)

= e jβα ·
nR−1∑
m=0

e j
(
2π dtdr cos θt cos θr

λR (l−k)m
)

= e jβα ·
nR−1∑
m=0

e jmu

= e jβα · 1 − e jnRu

1 − e ju

= e jβαe j(nR−1) u
2 ·

sin
(

nRu
2

)
sin

(
u
2

)
= e jψ · sin(nRx)

sin x
= e jψ · UnR−1(cos x), (34)

where u = 2π dtdr cos θt cos θr
λR (l− k), x = u/2 = π

nRη
(l− k),

and ψ = βα + (nR − 1)x.9 Since hH
0 h1 = (hH

1 h0)∗, the
matrix M may be written compactly as

M =
[

nR e− jψUnR−1(cos x)
e jψUnR−1(cos x) nR

]
, (35)

where x = π
nRη

.10 The eigenvalues of the matrix in
(35) are derived from the characteristic equation, and
they are equal to

λ1 = nR + UnR−1(cos x), (36)

λ2 = nR − UnR−1(cos x). (37)
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