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Abstract  This paper develops a queueing model for aircraft arrivals at a single server under trajectory-based flight 
operations, which are expected to prevail in the Next Generation Air Transportation System. Aircraft are assigned scheduled 
times of arrival at a server, which they meet with some normally distributed stochastic error. A recursive queueing model is 
formulated, and the Clark approximation method is employed. Exact results are derived for a special case with evenly 
spaced scheduled times of arrival, and the impact of buffers in the arrival stream is explored. 

Keywords aircraft, 4D trajectories, queueing model 

 

1. INTRODUCTION  
 
The nation's air transportation system (NAS) will incur 
major transformations in the coming years, developing 
towards the so-called Next Generation Air Transportation 
System (NextGen). NextGen features a shift from the 
current static system of routes and sectors to one that is 
adaptive to weather, traffic, and user preferences. NextGen 
planners envision a system in which users will exchange 
trajectory information and supply the Air Navigation 
Service Provider with greater amounts of information 
about future traffic demand. This will be used to anticipate 
and resolve conflicts well in advance, reducing the need 
for tactical air traffic control. It will also allow controlled 
times of arrival into busy terminals, weather-impacted 
airspace, and other bottlenecks. This transformation is 
expected to greatly reduce human operator workload and 
significantly increase airport and airspace capacity. 
The motivation for this research is the fact that the ability 
to control and predict 4D aircraft trajectories (4DT) with 
high precision is a cornerstone of NextGen. 4DT 
capability, with time being the fourth dimension, is 
defined as the ability to precisely fly an assigned 3D 
trajectory while meeting specified times of arrival at 
certain waypoints [1]. This will allow high density flows 
that rely on controlled times of arrival for critical 
resources, including entry and exit to/from airspace 
regions, taxiways, and runways [1]. Thus, in this research 
we assume that an aircraft’s flight path includes a series of 
waypoints (that can be either points in the airspace or the 
runway’s threshold) that the aircraft has to cross at a 
scheduled time. In other words, we assume that under 4DT 
operations aircraft will be metered at fixes. 

However, even with the deployment of the very best 4D 
trajectory precision and navigation tools, adherence to 4D 
trajectories — in particular to scheduled arrival times at 
the fixes — will not be perfect. Sources of imprecision 
include airframe-to-airframe variation in aerodynamic 
performance, limitations in wind prediction capability, 
variations in flight crew technique, and varying degrees of 
exactitude in navigational performance [1]. As the NAS 
evolves from its current state to a future condition where 
location precision is maximized, trajectory precision will 
vary in response to these factors. It will range from low 
precision, corresponding to today's operations in the NAS, 
to high precision, enabled by full deployment and 
utilization of precision navigation and 4DT trajectory 
awareness tools. Operations at the two ends of this 
spectrum can be modeled using stochastic and 
deterministic queuing models; see [2]. While the models 
for such cases are well established, it is far more 
challenging to consider intermediate levels of stochasticity. 
Such cases must, however, be considered when modeling 
NextGen since trajectory adherence will be imperfect, but 
sufficient to invalidate the assumptions of existing 
stochastic models. Thus, the objective of this paper is to 
model aircraft operations in NextGen, in a way that 
accounts explicitly for varying levels of trajectory 
uncertainty.  
Existing stochastic queueing models typically assume that 
the aircraft arrival process at an airport’s terminal airspace 
area is a non-homogeneous Poisson process [3]. However, 
for trajectory-based operations in NextGen, the Poisson-
arrivals assumption does not capture the concept of 
metered aircraft operations. Thus, in this paper, we 
propose a queueing model that can analyze flight delays in 
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a high-precision trajectory-based operational environment, 
as is envisioned under NextGen.  
Within transportation engineering context, queueing 
models with scheduled arrivals have been proposed to 
study port operations. Sabria and Daganzo [4] examine 
single server queueing systems where customers must be 
served in an order that is specified by a timetable, i.e. in a 
First-Scheduled-First-Served (FSFS) order. Each customer 
has a scheduled time of arrival at the server, where they 
actually arrive with some stochastic lateness (positive or 
negative). Exact transient solutions are obtained for the 
case when the lateness distribution is Gumbel, and service 
times are deterministic. In the present paper though, 
stochastic deviations from scheduled times of arrival are 
assumed to follow a Normal distribution, while the rule of 
FSFS service is maintained.  
In addition to developing a queueing model, we examine 
the effect of buffer time between scheduled arrivals on 
system delay. Although any delays due to unpunctual 
aircraft arrivals can be absorbed in the inserted buffer, the 
system incurs losses in throughput performance. Therefore 
two types of inefficiencies can be defined: those due to 
reduced throughput and those to unpunctual arrivals. 
While the former can be planned ahead, the latter are 
unpredictable. Thus, a different cost coefficient can be 
assigned to each type of inefficiency and we seek to find 
the optimal amount of buffer time that minimizes the total 
cost of delay.  
The rest of the paper is organized as follows: Section 2 
presents the general form of our model and its 
approximate solution, and report on experiments 
conducted to assess the accuracy of the model against 
simulation. In Section 3 we consider a special case, in 
which aircraft are metered at a constant rate and the 
separation requirements as well as 4DT precision levels 
are same among all aircraft. Working with a queueing 
model in this simplified form enables us to shed light in 
the issue of finding an optimal metering rate that attains 
high throughput while keeping delays due to imprecise 
adherence to 4DT’s small. Finally, Section 4 summarizes 
our main findings and discusses several directions for 
future research. 
 

2. THE MODEL AND AN APPROXIMATE 
SOLUTION 

 
2.1 Model Formulation 
Our queueing system consists of a single server, which is a 
fix (either a point in the airspace or a runway’s threshold), 
and of airplanes that must cross this fix. Aircraft are 
assigned scheduled times of arrival at the fix, and they fly 
4D trajectories to arrive at the fix at their scheduled times. 
However, due to imprecision in trajectory adherence, 
aircraft’s actual time of arrival at the fix has some 

stochastic deviation from its scheduled arrival time. The 
sources of imprecision might include airframe-to-airframe 
variation in aerodynamic performance, limitations in wind 
prediction capability, variations in flight crew technique, 
and varying degrees of exactitude in navigational 
performance [1]. In addition, consecutive aircraft must 
maintain a minimum headway h, which can vary over 
pairs of arriving aircraft, for safety reasons. Since air 
traffic controllers, with guidance from separation rules, 
decide values for h, we consider it as a deterministic 
variable in our model. Moreover, we assume that h is the 
binding constraint among all factors that may affect the 
minimum required separation between consecutive 
aircraft.    
Following Sabria and Daganzo’s approach, each airplane i 
has an arrival time at the server Ai that consists of a 
deterministic and a stochastic portion. The deterministic 
component ai is the scheduled arrival time at the fix, while 
the stochastic component is denoted as  

!Ai  and represents 
the lateness (positive or negative) with which the aircraft 
arrives at the fix, due to imprecision in trajectory 
adherence. Therefore, we have  Ai = ai +

!Ai . 

We assume that deviations  
!Ai 's are small enough that 

serving aircraft on a First-Scheduled-First-Served (FSFS) 
order will not significantly increase delays. As an order of 
magnitude, NextGen planners foresee accuracies of ±10  
seconds in aircraft meeting scheduled times of arrival [5]. 
Under a FSFS queue discipline, the actual time airplane i 
departs from the server, Di, would be Ai if there were no 
queue at the server by the time it arrived, or the time the 
previous scheduled aircraft i-1 crossed the fix plus a 
minimum required separation headway hi-1,i between the 
two aircraft. The actual times that aircraft cross the fix 
under study would then be:  

 
D1 = A1
Di = max Ai ,Di!1 + hi!1,i( ), "i # 2

 

If there were no stochasticity in the system, the 
deterministic time of departure from the server would be:  

 di = max ai ,di!1 + hi!1,i( ), "i # 2  

Accounting for stochasticity, the departure time from the 
server of airplane i is: 

  Di = di + !Di  

The distribution of the stochastic component  
!Di  clearly 

depends on , which captures all stochastic effects that 
cause flight i to arrive at a time other than its scheduled 
one ai : 

 
!D1 = !A1     (1a) 
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!Di = max ai + !Ai ,di!1 + !Di!1 + hi!1,i( ) ! di , "i # 2  (1b) 

The second pivotal assumption is that the vector of 
stochastic errors  

!Ai  follows a multivariate normal 
distribution with zero means (without loss of generality), 
standard deviations ! i , and a covariance structure !: 

 
!A " Normal (0,!) . The normality assumption stems from 

the observation that the probability distribution for  
!Ai  is 

generated by convolving the individual distributions of 
low-correlated stochastic factors. It should be emphasized 
though, that  

!Ai 's do not represent factors such as, 
departure delays, traffic management initiatives, severe 
weather, or en-route congestion that cause significant 
amounts of delays; lateness effects due to such factors 
have already been incorporated in the estimation of 
scheduled arrival times ai.  
In practice, values for schedule deviation ! i  could be 
aggregated to represent classes of aircraft that have similar 
capabilities of adherence to 4D trajectories. For example, 
one could assume two different values for the standard 
deviation, ! A  and ! B , in order to roughly represent 
aircraft with and without Area Navigation (RNAV) and 
Required Navigation Performance (RNP) capabilities. 
Alternatively, one could also differentiate aircraft’s ability 
to precisely fly 4D trajectories according to the en-route 
weather conditions they encounter. 
 
2.2 Solution with the Clark Approximation Method 
In equation (1), for i=2 both terms of the  max i( )  operator 
are normally distributed. The max operation on normal 
random variables, in contrast to the add operation, does 
not yield a normal random variable. A well-known result 
due to Clark [6] derives analytical formulas for the mean 
and variance of the maximum of two normally distributed 
random variables. Let X and Y be normally distributed 
random variables, X ~ N(µX ,! X )  and Y ~ N(µY ,!Y ) , !  
represent the correlation coefficient between X and Y, and 
Z be the maximum of X and Y,  Z ! max(X,Y ) . The mean 
µZ  and variance ! Z

2  of Z are then: 

 

µZ = µX!(" ) + µY!(#" ) + $%(" )

& Z
2 = & X

2 + µX
2( )!(" ) + &Y

2 + µY
2( )!(#" )

+ µX + µY( )$%(" ) # µZ
2

  

where 

 

 

! ! " X
2 +"Y

2 # 2$" X"Y( )1/2

% ! µX # µY
!

& x( ) ! 1
2'

exp # x
2

2
(
)*

+
,-

. y( ) ! & x( )dx
#/

y

0

 

 The coefficient of linear correlation between Z 
and a third normal random variable W can also be 
estimated, given that we know the coefficients of linear 
correlation between X and W !X ,W( ) , and between Y and 

W !Y ,W( ) : 

 r W ,Z[ ] = ! X"X ,W# $( ) +!Y"Y ,W# %$( )( ) /! Z  

The above formulas give the exact mean and variance of 
Z. The approximation is introduced by assuming that Z 
follows a normal distribution with mean µZ  and variance 

! Z
2 .  

In the context of our problem with scheduled aircraft 
arrivals, the Clark approximation method can be used for 
all i ! 2  to approximate Di 's as normal random variables, 
and estimate their mean E(Di )  and variance Var(Di )  in a 
recursive manner: 
 
E(Di ) = ai!(" i ) + E(Di#1 ) + hi#1,i$% &'!(#" i ) + ( i)(" i )  (2) 

 
Var(Di ) = ! i

2 + ai
2( )"(# i ) +

+ Var Di$1( ) + E Di$1( ) + hi$1,i%& '(
2%

&
'
("($# i ) +

+ ai + E Di$1( ) + hi$1,i%& '() i* # i( ) $ E Di( )%& '(
2

(3) 

r Ai+1,Di!" #$ = [% i & '1( ) i( ) +
+ Var Di*1( ) & '2 &( *) i( )] / Var Di( )

 (4) 

where 

! i = " i
2 +Var Di#1( ) # 2 $ % $" i $ Var Di#1( )( )1/2  (5) 

 ! i =
ai " E Di"1( ) " hi"1,i

# i

 (6) 

and at each step i 
! = r Ai ,Di"1[ ], !1 = r Ai+1,Ai[ ], !2 = r Ai+1,Di"1[ ] . 

Note that r Ai ,Di!1[ ]  and r Ai+1,Di!1[ ]  are obtained 
through equation (4) in previous iterations. Effectively, the 
method is implemented by estimating at each step k 
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r Ai ,Dk[ ]  for all i > k . Moreover, r Ai+1,Ai[ ]  is 
considered as input from covariance matrix !. Equations 
(2)-(6) are easy to program and they are computationally 
efficient. Finally, for a stream of N flights scheduled for to 
arrive at a fix, the total expected delay is defined as: 

 
 
E WN[ ] ! E Di( ) ! ai

i=1

N

"#
$
%

&
'
(   

This completes the formulation of our queueing model. In 
summary, the model requires as inputs a schedule of 
arrival times ai, a capacity profile expressed in terms of 
time separation headways hi-1,i, and a covariance matrix of 
trajectory adherence errors ! i, j . These, coupled with the 
assumption that ! i 's are small enough to allow a first-
scheduled, first-served policy, enable the estimation of 
expected flight delays through Clark's approximation 
method. 
 
2.3 Approximation Error 
Although the maximum Z of two normal random variables 
X and Y is not normally distributed, our model is based on 
approximating Z with a normal random variable. In 
particular, in estimating Di = max Ai ,Di!1 + hi!1,i( )  it is 
assumed that Di-1 is normally distributed. That enables the 
estimation of the mean and variance of Di, which is then 
also approximated as a normal random variable. However, 
each pair-wise operation introduces some error that is 
propagated and might affect the accuracy of our estimates. 
For a thorough analysis on this topic, see Sinha et al. [7] 
and Horowitz et al. [8]. 
To test the accuracy of the Clark Approximation Method 
in the context of our analysis, several operational scenarios 
were considered. The estimates from the analytical 
queueing model were then compared against the average 
of 104 Monte Carlo simulation runs, which is considered 
as ground truth. 
Each operational scenario was formulated as follows: a 
total of 120 aircraft must cross a fix, and the minimum 
required separation between any two successive aircraft is 

set to hi!1,i = 30, 60, or 90  seconds. Each aircraft is 
assigned a scheduled time of arrival at the server 
ai = ai!1 + hi!1,i + b , where b denotes a buffer time 
inserted. Aircraft arrive at the server with some 
imprecision that follows a normal distribution and has a 
standard deviation !. Zero covariance was assumed across 
the aircraft arrival times at the server Ai. A total of 90 
scenarios were examined:  

• 10 different sequences of hi-1,i (each sequence has 
an equal mix of 30, 60, and 90 seconds) 

• b = 0, 10, and 20 seconds (held constant within 
each sequence) 

• ! = 10 seconds (uniform across all aircraft), 30 
seconds (uniform across all aircraft), and an equal 
mix of both. 

Three metrics for the approximation method accuracy 
were considered: 

1. Percentage Error  in total Delay % (PE): 
E WN[ ]appr ! E WN[ ]sim

E WN[ ]sim
"100  

2. Absolute Error in Total Delay (AE): 

E WN[ ]appr ! E WN[ ]sim  

3. Flight Departure Time Mean Absolute Deviation 

(MAD): 
Di

appr ! Di
sim

i=1

N

"
N

 

The first two metrics evaluate the accuracy of the 
approximation method in estimating the expected total 
aircraft delay against assigned scheduled times of arrival. 
The third metric provides with a measure of the error in 
predicted outcomes for individual flights.  
The results are presented in Table 1. Each entry in the 
table represents the average value across the ten scenarios 
of different hi!1,i  sequences. In all cases, the Total Delay 
PE metric indicates that the approximation method is 
within -8% accuracy in estimating the total delay in the 
system, as compared to simulation. Moreover, the absolute 

 
Table 1 Results of approximation accuracy tests 

  Buffer = 0 (sec) Buffer = 10 (sec) Buffer = 20 (sec) 
  PE AE (sec) MAD (sec) PE AE (sec) MAD (sec) PE AE (sec) MAD (sec) 

" = 10  -0.62% 13.78 0.14 -3.26% 9.17 0.09 -3.93% 2.97 0.08 
" = 30  -0.49% 36.50 0.35 -1.69% 40.92 0.35 -2.41% 31.17 0.31 
Mixed -1.52% 97.26 0.89 -5.74% 79.53 0.65 -7.70% 54.07 0.44 
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error in estimating total delay does never exceed 1.3 
minutes. Also, the MAD metric indicates that the 
approximation method estimates the expected delay of 
each aircraft with accuracy better than 1 second, on 
average. The accuracy of the method slightly decreases 
when the fleet contains aircraft with different navigation 
capabilities. This must be due to heterogeneity in the 
variance of the normal distributions for Ai that enters in the 
max operator in each step of the recursion. 
In summary, these experimental results indicate that our 
proposed model accurately predicts operational 
consequences of metered operations with good but 
imperfect 4DT adherence, as might be expected in 
NextGen. 
 

3. SIMPLIFIED MODEL 
 
3.1 Formulation 
We consider the case where average demand for service 
exceeds capacity over a considerable period of time, and 
aircraft are metered at the server (e.g. a point in the 
airspace, or a runway’s threshold) at a constant metered 
headway of a time units. To maximize throughput and 
minimize expected delay, a should be set to the minimum 
headway, h. It may, however, better to set a to be slightly 
greater than h, for at least two reasons. First, while 
increasing a increases delay, it also make the delay more 
predictable. Airlines value such predictability because it 
enables them to better plan terminal operations. Second, 
the delays that result from setting a above h can be 
absorbed in a more efficient manner, by increasing time at 
higher altitudes and reducing speed slightly over a longer 
distance rather than dramatically as the aircraft approaches 
the metering fix. For these reasons, aircraft operators may 
be willing to accept an increase in overall delay in 
exchange for a reduction in the amount of stochastic delay 
that results from imperfect trajectory adherence. In this 
section we employ our model to quantify this trade-off.  
We focus on a single fix, and make the following 
assumptions: 

• The required minimum time headway h between 
successive aircraft is constant and deterministic. 

• Flight arrivals are uniformly scheduled during the 
analysis period, with metering headway a. 

• Stochastic errors  are i.i.d. random variables 
with zero mean and standard deviation . 

In a fully deterministic environment, there will be no 
delays if the separation headway a is greater than the 
minimum headway h. However, if an airplane arrives later 
than its scheduled arrival time, then it might cause delay to 
airplanes upstream of it. We are interested in quantifying 
the expected amount of delay that each airplane in the 
stream incurs. 

Since a ! h , the deterministic component of departure 
times from the server would be di = ia , and thus Eq. (1) 
becomes: 

 
!D1 = !A1     (7a) 

 
 
!Di = max !Ai , !Di!1 + h ! a( ), "i # 2  (7b) 

where  
!Ai ~ N 0,!( ), "i # 1 . 

We are interested in deriving an analytical expression for 

 
E !Di( ) , but this is a rather difficult task. Instead, we 

define as 
 
!Zi " max !Ai

*, !Zi!1 ! "( ) where !Ai
* # N 0,1( ) , and 

resort to dimensional analysis by employing the following 
proposition: 
Proposition 1. For a given level of the relative buffer 

 ! ! a " h( ) /# , the sequence of random variables  
!Di  is 

proportional to the sequence of random variables  
!Zi  by 

!  standard deviations:  

   
!Di = ! " !Zi    (8) 

Proof. Assume that for some i # 2,  
!Di!1 = " # !Zi!1 . Then 

we have: 

 
 

!Di = max !Ai , !Di!1 ! a ! h( )( )
= max " # !Ai

*," # !Zi!1 ! " # $( ) = " # !Zi
 

But note that for i = 2: 

 
 

!D2 = max !A2 , !D1 ! a ! h( )( )
= max " # !A2

*," # !A1
* ! " # $( ) = " # !Z2

 

Hence, for i ! 3  the result follows by induction. !  

Therefore, the problem of estimating 
 
E !Dn( )  is reduced to 

estimating 
 
E !Zn( ) . To estimate the mean of  

!Zn  we first 

derive its cumulative distribution function: 

 
 
F!Zn x( ) = ! x( ) "! x + #( ) "… "! x + n $1( )#( )  

The probability distribution function of  
!Zn  is therefore: 

 

 

f !Zn x( ) = ! x + k "1( )#( ) $k( ) ,
$ k = 1 for i = k
$ k = 0 for i % kk=1

n

&
i=1

n

'  

where the term ! k( )  indicates a derivative. The mean of 

 
!Zn  is therefore: 
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E !Zn!" #$ = x % & x + k '1( )(( ) )k( ) dx,
k=1

n

*
i=1

n

+
',

+,

-
where

) k = 1 for i = k
) k = 0 for i . k

 (9)  

Therefore, it suffices to consider cases for !  and compute 

 
E !Zi( )  through numerical integration; Fig. 1 depicts 

several such curves for 
 
E !Zi( ) . Thus, for any value of ! , 

a and h, values for 
 
E !Di( )  can be computed by selecting 

the appropriate curve from Fig. 1 and multiplying 
 
E !Zi( )  

by ! . In this way, instead of an analytical formula, values 
for 

 
E !Di( )  can be estimated through a lookup table and 

with the same level of accuracy. Note that the system 
eventually reaches a steady state (except for the case 
! = 0 ), after which each flight incurs the same amount of 
expected delay 

 
E !Zi( )! .  

Finally, for a stream of N flights scheduled for landing and 
a given value a–h the total expected delay is equal to: 

 
 
E WN[ ] = E Di ! ia( )

i=1

n

"#
$
%

&
'
( = E !Zi( )

i=1

n

"#
$
%

&
'
()  (10) 

Therefore, the expected total delay of the system is 
proportional to the standard deviation !  of the stochastic 
error  

!Ai . We can thus plot the expected total delay 
E WN[ ]  against the number of flights N in the arrival 
stream, for the case when ! = 1  (see Fig. 2). Observe that 
for lower levels of the relative buffer ! , the system incurs 
higher stochastic delay due to its reduced capacity for 
absorbing stochastic deviations from schedule.  
 
3.2 Trade-offs between deterministic and stochastic 
delay  
After developing methods for estimating each flight’s 
expected stochastic delay, we proceed to analyzing the 
trade-off between stochastic delay and throughput. In the 
context of our analysis, the maximum departure rate from 
the fix that can be attained is constrained by aircraft 
minimum separation requirements and is equal to 1/h. 
Thus, in order to achieve maximum throughput from the 
server, one would attempt to meter aircraft at the fix at a 
headway a = h. However, that will result in maximum 
stochastic delay, as can be inferred from Fig. 1 for ! = 0 . 
By metering at a headway a > h we decrease the expected 
amount of stochastic delay, since !  increases with a, but 
at the same time we incur increases in deterministic 
queueing delay. A graphical illustration through a 
queueing diagram is presented in Fig. 3.  
 

 
Figure 1 Expected delay 

 
E !Zi( )  for several values of " 
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For a surge of N aircraft arrivals, the expected loss from 
those two types of delay can be expressed as: 

 
 
! L[ ] = 1 / 2 "N " N "a # N "h( ) + $ " ! !Zi%& '( ")

i=1

N

*  

 or 
 
! L[ ] = 1 / 2 "N 2 " # + $ " ! !Zi%& '(

i=1

N

)*
+,

-
./
"0  (15) 

The coefficient !  in the above relationship is the relative 
cost of stochastic delay over the delay due to reduced 
throughput. As noted earlier, delays due to reduced 
metering rate can be planned for well in advance, taken at 
a higher altitude, in less busy airspace, and with relatively 
small speed reductions. As an example, we consider two 
values for the relative cost of stochastic over deterministic 
delay, namely ! = 3 and ! = 10 , as well as two surges of 
aircraft arrivals, N = 50 and N = 100 . For each case, the 

 

Figure 2 Expected Total Delay E WN[ ]  for several values of !  
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Figure 3 Queueing diagram with deterministic and stochastic delays 
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normalized (after setting ! = 1 ) expected loss E L*!" #$  as a 
function of !  is plotted in Fig. 4. 

The values of relative buffer that minimize E L*!" #$ , !* , 

range between 0.01 and 0.16. Even a value of !* = 0.16  
translates to a buffer of 3 seconds between consecutive 
aircraft for a scenario where ! = 20  seconds. Also, 
observe that for constant N, !*  increases with ! . 
Therefore, as the unit cost of stochastic delay increases, a 
larger buffer is required to achieve minimum losses. On 
the other hand, for constant ! , !*  decreases with N, 
indicating that the loss from stochastic delays increases at 
a lower rate than the loss from deterministic delays, as the 
surge of aircraft becomes larger. That is expected since 
deterministic delays increase with N2 (see Equation 15), 
while stochastic delays increase linearly with N as it can 
be observed in Fig. 2. 

 
4. CONCLUSIONS 

In this paper a queueing system with a single server under 
4D trajectory-based aircraft operations is examined. 
Aircraft are assigned scheduled times of arrival at a fix, 
which they meet with some stochastic error. A normal 
distribution was assumed for the error, and aircraft enter 
service according to a First-Scheduled-First-Served queue 
discipline. A recursive queueing model was formulated, 
and the Clark approximation method was employed to 
analytically estimate the mean and variance of aircraft 

delays. The accuracy of the approximated method was 
validated through simulation experiments, which indicated 
sufficient accuracy of the Clark method in estimating total 
system delays.  
Next, a simplified situation, with homoskedastic model 
parameters, was examined in order to provide insights into 
the queueing system. The impact of buffers in the arrival 
stream was investigated, and was found that minimum 
losses from deterministic and stochastic delays are attained 
when the added buffer is small as compared to the level of 
precision ! . 
Extending this research will relax the FSFS rule of service 
and allow aircraft to re-sequence themselves as they 
approach the server. It will also model explicitly the 
Runway Occupancy Time of an aircraft as a separate 
random variable, which is now embedded in the 
deterministic minimum required headway h. Moreover, a 
distribution other than normal will be considered for the 
unimpeded arrival times Ai. Finally, an extension to the 
single server case presented in this paper could be a 
scenario with a network of servers. 
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Figure 4 Expected loss from deterministic and stochastic delays as a function of 
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