New trends in Air Traffic Complexity

D. Delahaye and S. Puechmorel

Applied Math Laboratory ENAC

March 5, 2009

- Why complexity metrics are needed ?

Agenda

- Why complexity metrics are needed ?
- Dynamical system modeling of aircraft trajectories

Agenda

- Why complexity metrics are needed ?
- Dynamical system modeling of aircraft trajectories
- How a complexity map is built ?

Agenda

- Why complexity metrics are needed ?
- Dynamical system modeling of aircraft trajectories
- How a complexity map is built ?
- Results

Agenda

- Why complexity metrics are needed ?
- Dynamical system modeling of aircraft trajectories
- How a complexity map is built ?
- Results

Why complexity metrics are needed ?

Airspace design

Why complexity metrics are needed ?

Airspace design

- Airspace comparison (US-Europe)

Why complexity metrics are needed?

Airspace design

- Airspace comparison (US-Europe)
- Evaluation of Airspace Organisation Schemes

Why complexity metrics are needed?

Airspace design

- Airspace comparison (US-Europe)
- Evaluation of Airspace Organisation Schemes
- Implementation of flexible use of airspace policies

Why complexity metrics are needed ?

Airspace design

- Airspace comparison (US-Europe)
- Evaluation of Airspace Organisation Schemes
- Implementation of flexible use of airspace policies

4D contract framework

Why complexity metrics are needed ?

Airspace design

- Airspace comparison (US-Europe)
- Evaluation of Airspace Organisation Schemes
- Implementation of flexible use of airspace policies

4D contract framework

- 4D Trajectory design.

Why complexity metrics are needed ?

Airspace design

- Airspace comparison (US-Europe)
- Evaluation of Airspace Organisation Schemes
- Implementation of flexible use of airspace policies

4D contract framework

- 4D Trajectory design.
- Forecasting of potentially hazardous traffic situations.

Why complexity metrics are needed ?

Airspace design

- Airspace comparison (US-Europe)
- Evaluation of Airspace Organisation Schemes
- Implementation of flexible use of airspace policies

4D contract framework

- 4D Trajectory design.
- Forecasting of potentially hazardous traffic situations.
- Automated Conflict Solver enhancement (robustness of the solution).

Complexity vs Workload

Workload

Complexity vs Workload

Workload

- Related to cognitive processes for human controllers.

Complexity vs Workload

Workload

- Related to cognitive processes for human controllers.
- Easy/Hard forecasting of conflict occurence.

Complexity vs Workload

Workload

- Related to cognitive processes for human controllers.
- Easy/Hard forecasting of conflict occurence.
- Monitoring is a non negligible part of the workload.

Complexity vs Workload

Workload

- Related to cognitive processes for human controllers.
- Easy/Hard forecasting of conflict occurence.
- Monitoring is a non negligible part of the workload.

Complexity

Complexity vs Workload

Workload

- Related to cognitive processes for human controllers.
- Easy/Hard forecasting of conflict occurence.
- Monitoring is a non negligible part of the workload.

Complexity

- Related to traffic structure.

Complexity vs Workload

Workload

- Related to cognitive processes for human controllers.
- Easy/Hard forecasting of conflict occurence.
- Monitoring is a non negligible part of the workload.

Complexity

- Related to traffic structure.
- Measure of intrinsic disorder of a set of trajectories.

Complexity vs Workload

Workload

- Related to cognitive processes for human controllers.
- Easy/Hard forecasting of conflict occurence.
- Monitoring is a non negligible part of the workload.

Complexity

- Related to traffic structure.
- Measure of intrinsic disorder of a set of trajectories.
- Increases with :

Complexity vs Workload

Workload

- Related to cognitive processes for human controllers.
- Easy/Hard forecasting of conflict occurence.
- Monitoring is a non negligible part of the workload.

Complexity

- Related to traffic structure.
- Measure of intrinsic disorder of a set of trajectories.
- Increases with :
- Sensitivity to uncertainties.

Complexity vs Workload

Workload

- Related to cognitive processes for human controllers.
- Easy/Hard forecasting of conflict occurence.
- Monitoring is a non negligible part of the workload.

Complexity

- Related to traffic structure.
- Measure of intrinsic disorder of a set of trajectories.
- Increases with :
- Sensitivity to uncertainties.
- Interdependance of conflicts.

Intrinsic part of complexity

Sensitivity

Intrinsic part of complexity

Sensitivity

- Uncertainties on positions, wind speed, intents induce inaccuracy on trajectory prediction.

Intrinsic part of complexity

Sensitivity

- Uncertainties on positions, wind speed, intents induce inaccuracy on trajectory prediction.
- Depending on the situation, prediction error can grow exponentially fast!

Intrinsic part of complexity

Sensitivity

- Uncertainties on positions, wind speed, intents induce inaccuracy on trajectory prediction.
- Depending on the situation, prediction error can grow exponentially fast!
- In such a case, the situation is complex because nearly impossible to forecast.

Intrinsic part of complexity

Sensitivity

- Uncertainties on positions, wind speed, intents induce inaccuracy on trajectory prediction.
- Depending on the situation, prediction error can grow exponentially fast!
- In such a case, the situation is complex because nearly impossible to forecast.

Interdependance

Intrinsic part of complexity

Sensitivity

- Uncertainties on positions, wind speed, intents induce inaccuracy on trajectory prediction.
- Depending on the situation, prediction error can grow exponentially fast!
- In such a case, the situation is complex because nearly impossible to forecast.

Interdependance

- Solving a conflict may induce other ones.

Intrinsic part of complexity

Sensitivity

- Uncertainties on positions, wind speed, intents induce inaccuracy on trajectory prediction.
- Depending on the situation, prediction error can grow exponentially fast!
- In such a case, the situation is complex because nearly impossible to forecast.

Interdependance

- Solving a conflict may induce other ones.
- Even in conflict-less situations, interactions between trajectories can rise the perceived level of complexity.

Intrinsic part of complexity

Sensitivity

- Uncertainties on positions, wind speed, intents induce inaccuracy on trajectory prediction.
- Depending on the situation, prediction error can grow exponentially fast!
- In such a case, the situation is complex because nearly impossible to forecast.

Interdependance

- Solving a conflict may induce other ones.
- Even in conflict-less situations, interactions between trajectories can rise the perceived level of complexity.
- Complexity is related to mixing behaviour.

Sensitivity-interdependance

No Sensitivity
No conflict
Easy situation

Hight sensitivity
Potential conflicts without interaction between solutions

Hight sensitivity
Potential conflicts with interactions between solutions

Hard situation

Agenda

- Why complexity metrics are needed ?
- Dynamical system modeling of aircraft trajectories
- How a complexity map is built ?
- Results

Linear Dynamical System Modeling

The key idea is to model the set of aircraft trajectories by a linear dynamical system which is defined by the following equation :

$$
\dot{\vec{x}}=\mathbf{A} \cdot \vec{X}+\vec{B}
$$

where \vec{X} is the state vector of the system:

$$
\vec{X}=\left[\begin{array}{l}
x \\
y \\
z
\end{array}\right]
$$

Matrix \mathbf{A} and vector \vec{B} are the parameters of the model.

Regression of a Linear Dynamical System

Regression of a Linear Dynamical System

Regression of a Linear Dynamical System

Regression of a Linear Dynamical System

- Based on a set of observations (positions and speeds), one has to find a dynamical system which fits those observations. Suppose that N obervations are given :
Positions:

$$
\vec{X}_{i}=\left[\begin{array}{l}
x_{i} \\
y_{i} \\
z_{i}
\end{array}\right]
$$

and speeds :

$$
\vec{V}_{i}=\left[\begin{array}{l}
v x_{i} \\
v y_{i} \\
v z_{i}
\end{array}\right]
$$

Regression of a Linear Dynamical System

- Based on a set of observations (positions and speeds), one has to find a dynamical system which fits those observations. Suppose that N obervations are given :
Positions:

$$
\vec{X}_{i}=\left[\begin{array}{l}
x_{i} \\
y_{i} \\
z_{i}
\end{array}\right]
$$

and speeds :

$$
\vec{V}_{i}=\left[\begin{array}{l}
v x_{i} \\
v y_{i} \\
v z_{i}
\end{array}\right]
$$

- A LMS precedure is applied in order to extract the matrix \mathbf{A} and the vector \vec{B}.

Properties of the matrix \mathbf{A}

- When real part of the eigenvalues of matrix \mathbf{A} is positive, the system is in expansion mode and when they are negative, the system is in contraction mode.

Properties of the matrix \mathbf{A}

- When real part of the eigenvalues of matrix \mathbf{A} is positive, the system is in expansion mode and when they are negative, the system is in contraction mode.
- Furthermore, the imaginary part of such eigenvalues are related with curl intensity of the field.

Linear Dynamical System Modeling : An example

Linear Dynamical System Modeling : An example

Linear Dynamical System Modeling : An example

Linear Model limitations

- Give a global tendency of the traffic situation.

Linear Model limitations

- Give a global tendency of the traffic situation.
- Do not fit exactly with all traffic situations.

Linear Model limitations

- Give a global tendency of the traffic situation.
- Do not fit exactly with all traffic situations.
- \Rightarrow Non Linear Extension

Non Linear Extension in Space

$$
\dot{\vec{x}}=\vec{f}(\vec{x})
$$

Optimization problem

Non Linear Extension in Space

$$
\dot{\vec{x}}=\vec{f}(\vec{X})
$$

Optimization problem

- \vec{f} ? such that :

$$
\min E=\sum_{i=1}^{i=N}\left\|\vec{V}_{i}-\vec{f}\left(\vec{X}_{i}\right)\right\|^{2}
$$

Non Linear Extension in Space

$$
\dot{\vec{x}}=\vec{f}(\vec{x})
$$

Optimization problem

- \vec{f} ? such that :

$$
\min E=\sum_{i=1}^{i=N}\left\|\vec{V}_{i}-\vec{f}\left(\vec{X}_{i}\right)\right\|^{2}
$$

- and

$$
\min \int_{\mathbb{R}^{3}}\|\Delta \vec{f}(\vec{x})\|^{2} d \vec{x} \text { with } \Delta \vec{f}=\left[\begin{array}{l}
\frac{\partial^{2} f_{x}}{\partial x^{2}}+\frac{\partial^{2} f_{x}}{\partial y_{z}}+\frac{\partial^{2} f_{x}}{\partial z_{z}} \\
\frac{\partial c^{2} f_{y}}{\partial z^{2}}+\frac{\partial^{\prime} f_{y}}{\partial y^{2}}+\frac{\partial^{2} z_{y}}{\partial z^{2}} \\
\frac{\partial^{2} f_{z}}{\partial x^{2}}+\frac{\partial^{2} f_{z}}{\partial y^{2}}+\frac{\partial^{2} f_{2}}{\partial z^{2}}
\end{array}\right]
$$

Non Linear Extension in Space

Exact Solution (Amodei)

$$
\vec{f}(\vec{X})=\sum_{i=1}^{N} \boldsymbol{\Phi}\left(\left\|\vec{X}-\vec{X}_{i}\right\|\right) \cdot \vec{a}_{i}+\mathbf{A} \cdot \vec{X}+\vec{B}
$$

with

$$
\boldsymbol{\Phi}\left(\left\|\vec{X}-\vec{X}_{i}\right\|\right)=\mathbf{Q}\left(\left\|\vec{X}-\vec{X}_{i}\right\|^{3}\right)
$$

and

$$
Q=\left[\begin{array}{ccc}
\partial_{x x}^{2}+\partial_{y y}^{2}+\partial_{z z}^{2} & 0 & 0 \\
0 & \partial_{x x}^{2}+\partial_{y y y}^{2}+\partial_{z z}^{2} & 0 \\
0 & 0 & \partial_{x x}^{2}+\partial_{y y}^{2}+\partial_{z z}^{2}
\end{array}\right]
$$

Non Linear Extension in Space and Time

$$
\dot{\vec{x}}=\vec{f}(\vec{X}, t)
$$

Optimization problem

Non Linear Extension in Space and Time

$$
\dot{\vec{x}}=\vec{f}(\vec{x}, t)
$$

Optimization problem

- We are looking for \vec{f} such that :

Non Linear Extension in Space and Time

$$
\dot{\vec{x}}=\vec{f}(\vec{X}, t)
$$

Optimization problem

- We are looking for \vec{f} such that :

$$
\min E=\sum_{i=1}^{i=N} \sum_{k=1}^{k=K}\left\|\vec{V}_{i}\left(t_{k}\right)-\vec{f}\left(\vec{X}_{i}, t_{k}\right)\right\|^{2}
$$

Non Linear Extension in Space and Time

$$
\dot{\vec{x}}=\vec{f}(\vec{X}, t)
$$

Optimization problem

- We are looking for \vec{f} such that :

$$
\min E=\sum_{i=1}^{i=N} \sum_{k=1}^{k=K}\left\|\vec{V}_{i}\left(t_{k}\right)-\vec{f}\left(\vec{X}_{i}, t_{k}\right)\right\|^{2}
$$

- and

$$
\min \int_{\mathbb{R}^{3}} \int_{t}\|\Delta \vec{f}(\vec{x})\|^{2}+\left\|\frac{\partial \vec{f}}{\partial t}\right\|^{2} d \vec{x} d t
$$

Non Linear Extension in Space and Time

Exact Solution (Puechmorel and Delahaye)

$$
\vec{f}(\vec{X}, t)=\sum_{i=1}^{N} \sum_{k=1}^{K} \boldsymbol{\Phi}\left(\left\|\vec{X}(t)-\vec{X}_{i}\left(t_{k}\right)\right\|,\left|t-t_{k}\right|\right) \cdot \vec{a}_{i, k}+\mathbf{A} \cdot \vec{X}+\vec{B}
$$

with

$$
\boldsymbol{\Phi}(r, t)=\operatorname{diag}\left(\frac{\sigma}{r} \cdot \operatorname{erf}\left[\frac{r}{\sigma} \cdot \frac{1}{\sqrt{2+\theta \cdot|t|}}\right]\right)
$$

Agenda

- Why complexity metrics are needed ?
- Dynamical system modeling of aircraft trajectories
- How a complexity map is built ?
- Results

Characterization of sensitivity

Dynamical system trajectories

- Let $t \mapsto \gamma\left(t, s_{0}\right)$ be a nominal dynamical system trajectory (s_{0} initial point)
- A perturbed trajectory is $t \mapsto \gamma(t, s)$ with $s \in V(V$ is an open neighborood of a given s_{0}).

Characterization of sensitivity

How fast two neighboring dynamical system trajectories diverge ?

Characterization of sensitivity

How fast two neighboring dynamical system trajectories diverge ?

- One has to compute the evolution of the distance to nominal trajectory with respect to time : $D(t, s)=\left\|\gamma\left(t, s_{0}\right)-\gamma(t, s)\right\|$.

Characterization of sensitivity

How fast two neighboring dynamical system trajectories diverge ?

- One has to compute the evolution of the distance to nominal trajectory with respect to time : $D(t, s)=\left\|\gamma\left(t, s_{0}\right)-\gamma(t, s)\right\|$.

Computing $D(t, s)$

Main idea : when $t \mapsto \gamma(t, s)$ is the solution of a differential equation with initial condition $\gamma(0, s)=s$, it is possible to show that D itself satisfies a differential equation.

Local behaviour of trajectories

Local behaviour of trajectories

The variational equation

- $\gamma(t, s)$ being a flow :

$$
\frac{\partial \gamma(t, s)}{\partial t}=F(t, \gamma(t, s)) \quad \gamma(0, s)=s
$$

with F a smooth vector field.

Local behaviour of trajectories

The variational equation

- $\gamma(t, s)$ being a flow :

$$
\frac{\partial \gamma(t, s)}{\partial t}=F(t, \gamma(t, s)) \quad \gamma(0, s)=s
$$

with F a smooth vector field.

- then divergence of nearby trajectories can be found by solving :

$$
\frac{\partial D(t, s)}{\partial t}=D F\left(t, \gamma\left(t, s_{0}\right)\right) \cdot D(t, s) \quad D(0, s)=\left\|s-s_{0}\right\|
$$

with $D F$ the jacobian matrix of F (with respect to s).

Lyapunov exponents

The variational equation II

- If the three axis are considered simultaneously, the previous equation has the following matrix structure :

$$
\frac{d M(t)}{d t}=D F\left(t, \gamma\left(t, s_{0}\right)\right) \cdot M(t) \quad M(0)=I d
$$

This equation is called the variational equation of the flow.

Lyapunov exponents

The variational equation II

- If the three axis are considered simultaneously, the previous equation has the following matrix structure :

$$
\frac{d M(t)}{d t}=D F\left(t, \gamma\left(t, s_{0}\right)\right) \cdot M(t) \quad M(0)=I d
$$

This equation is called the variational equation of the flow.

- The variational equation describes in some sense the local linear approximation of the original non linear dynamical system.

Lyapunov exponents

The variational equation II

- If the three axis are considered simultaneously, the previous equation has the following matrix structure :

$$
\frac{d M(t)}{d t}=D F\left(t, \gamma\left(t, s_{0}\right)\right) \cdot M(t) \quad M(0)=I d
$$

This equation is called the variational equation of the flow.

- The variational equation describes in some sense the local linear approximation of the original non linear dynamical system.

Lyapunov exponents

Lyapunov exponents

The variational equation II

- If the three axis are considered simultaneously, the previous equation has the following matrix structure :

$$
\frac{d M(t)}{d t}=D F\left(t, \gamma\left(t, s_{0}\right)\right) \cdot M(t) \quad M(0)=I d
$$

This equation is called the variational equation of the flow.

- The variational equation describes in some sense the local linear approximation of the original non linear dynamical system.

Lyapunov exponents

- Let $U^{t}(t) \Sigma(t) V(t)=M(t)$ be the SVD decomposition of $M(t)$.

Lyapunov exponents

The variational equation II

- If the three axis are considered simultaneously, the previous equation has the following matrix structure :

$$
\frac{d M(t)}{d t}=D F\left(t, \gamma\left(t, s_{0}\right)\right) \cdot M(t) \quad M(0)=I d
$$

This equation is called the variational equation of the flow.

- The variational equation describes in some sense the local linear approximation of the original non linear dynamical system.

Lyapunov exponents

- Let $U^{t}(t) \Sigma(t) V(t)=M(t)$ be the SVD decomposition of $M(t)$.
- The Lyapunov exponents are limit values of the logarithms of the diagonal elements of $\Sigma(t)$.

Interpretation of Lyapunov exponents

- Given an initial point, the Lyapunov exponents and the associated SVD decomposition provide us with a decomposition of space in principal directions and corresponding convergence/divergence rate.

Interpretation of Lyapunov exponents

- Given an initial point, the Lyapunov exponents and the associated SVD decomposition provide us with a decomposition of space in principal directions and corresponding convergence/divergence rate.
- It is a localized version of the complexity based on linear systems.

Agenda

- Why complexity metrics are needed ?
- Dynamical system modeling of aircraft trajectories
- How a complexity map is built ?
- Results

Results

Results

