New trends in Air Traffic Complexity

D. Delahaye and S. Puechmorel

Applied Math Laboratory ENAC

March 5, 2009

• Why complexity metrics are needed ?

- Why complexity metrics are needed?
- Dynamical system modeling of aircraft trajectories

- Why complexity metrics are needed?
- Dynamical system modeling of aircraft trajectories
- How a complexity map is built ?

- Why complexity metrics are needed?
- Dynamical system modeling of aircraft trajectories
- How a complexity map is built ?
- Results

- Why complexity metrics are needed?
- Dynamical system modeling of aircraft trajectories
- How a complexity map is built ?
- Results

Airspace design

Airspace design

Airspace comparison (US-Europe)

Airspace design

- Airspace comparison (US-Europe)
- Evaluation of Airspace Organisation Schemes

Airspace design

- Airspace comparison (US-Europe)
- Evaluation of Airspace Organisation Schemes
- Implementation of flexible use of airspace policies

Airspace design

- Airspace comparison (US-Europe)
- Evaluation of Airspace Organisation Schemes
- Implementation of flexible use of airspace policies

4D contract framework

Airspace design

- Airspace comparison (US-Europe)
- Evaluation of Airspace Organisation Schemes
- Implementation of flexible use of airspace policies

4D contract framework

4D Trajectory design.

Airspace design

- Airspace comparison (US-Europe)
- Evaluation of Airspace Organisation Schemes
- Implementation of flexible use of airspace policies

4D contract framework

- 4D Trajectory design.
- Forecasting of potentially hazardous traffic situations.

Airspace design

- Airspace comparison (US-Europe)
- Evaluation of Airspace Organisation Schemes
- Implementation of flexible use of airspace policies

4D contract framework

- 4D Trajectory design.
- Forecasting of potentially hazardous traffic situations.
- Automated Conflict Solver enhancement (robustness of the solution).

Workload

• Related to cognitive processes for human controllers.

Workload

- Related to cognitive processes for human controllers.
- Easy/Hard forecasting of conflict occurence.

Workload

- Related to cognitive processes for human controllers.
- Easy/Hard forecasting of conflict occurence.
- Monitoring is a non negligible part of the workload.

Workload

- Related to cognitive processes for human controllers.
- Easy/Hard forecasting of conflict occurence.
- Monitoring is a non negligible part of the workload.

Workload

- Related to cognitive processes for human controllers.
- Easy/Hard forecasting of conflict occurence.
- Monitoring is a non negligible part of the workload.

Complexity

Related to traffic structure.

Workload

- Related to cognitive processes for human controllers.
- Easy/Hard forecasting of conflict occurence.
- Monitoring is a non negligible part of the workload.

- Related to traffic structure.
- Measure of intrinsic disorder of a set of trajectories.

Workload

- Related to cognitive processes for human controllers.
- Easy/Hard forecasting of conflict occurence.
- Monitoring is a non negligible part of the workload.

- Related to traffic structure.
- Measure of intrinsic disorder of a set of trajectories.
- Increases with :

Workload

- Related to cognitive processes for human controllers.
- Easy/Hard forecasting of conflict occurence.
- Monitoring is a non negligible part of the workload.

- Related to traffic structure.
- Measure of intrinsic disorder of a set of trajectories.
- Increases with :
 - Sensitivity to uncertainties.

Workload

- Related to cognitive processes for human controllers.
- Easy/Hard forecasting of conflict occurence.
- Monitoring is a non negligible part of the workload.

- Related to traffic structure.
- Measure of intrinsic disorder of a set of trajectories.
- Increases with :
 - Sensitivity to uncertainties.
 - Interdependance of conflicts.

Sensitivity

• Uncertainties on positions, wind speed, intents induce inaccuracy on trajectory prediction.

Sensitivity

- Uncertainties on positions, wind speed, intents induce inaccuracy on trajectory prediction.
- Depending on the situation, prediction error can grow exponentially fast!

Sensitivity

- Uncertainties on positions, wind speed, intents induce inaccuracy on trajectory prediction.
- Depending on the situation, prediction error can grow exponentially fast!
- In such a case, the situation is complex because nearly impossible to forecast.

Sensitivity

- Uncertainties on positions, wind speed, intents induce inaccuracy on trajectory prediction.
- Depending on the situation, prediction error can grow exponentially fast!
- In such a case, the situation is complex because nearly impossible to forecast.

Interdependance

Sensitivity

- Uncertainties on positions, wind speed, intents induce inaccuracy on trajectory prediction.
- Depending on the situation, prediction error can grow exponentially fast!
- In such a case, the situation is complex because nearly impossible to forecast.

Interdependance

Solving a conflict may induce other ones.

Sensitivity

- Uncertainties on positions, wind speed, intents induce inaccuracy on trajectory prediction.
- Depending on the situation, prediction error can grow exponentially fast!
- In such a case, the situation is complex because nearly impossible to forecast.

Interdependance

- Solving a conflict may induce other ones.
- Even in conflict-less situations, interactions between trajectories can rise the perceived level of complexity.

Sensitivity

- Uncertainties on positions, wind speed, intents induce inaccuracy on trajectory prediction.
- Depending on the situation, prediction error can grow exponentially fast!
- In such a case, the situation is complex because nearly impossible to forecast.

Interdependance

- Solving a conflict may induce other ones.
- Even in conflict-less situations, interactions between trajectories can rise the perceived level of complexity.
- Complexity is related to mixing behaviour.

Sensitivity-interdependance

No Sensitivity

No conflict

Easy situation

Hight sensitivity

Potential conflicts without interaction between solutions

Hight sensitivity

Potential conflicts with interactions between solutions

Hard situation

- Why complexity metrics are needed ?
- Dynamical system modeling of aircraft trajectories
- How a complexity map is built ?
- Results

Linear Dynamical System Modeling

The key idea is to model the set of aircraft trajectories by a linear dynamical system which is defined by the following equation :

$$\dot{\vec{X}} = \mathbf{A} \cdot \vec{X} + \vec{B}$$

where \vec{X} is the state vector of the system :

$$\vec{X} = \left[\begin{array}{c} x \\ y \\ z \end{array} \right]$$

Matrix **A** and vector \vec{B} are the parameters of the model.

Regression of a Linear Dynamical System

 Based on a set of observations (positions and speeds), one has to find a dynamical system which fits those observations. Suppose that N obervations are given:

Positions:

$$\vec{X}_i = \left[\begin{array}{c} x_i \\ y_i \\ z_i \end{array} \right]$$

and speeds:

$$\vec{V}_i = \left[\begin{array}{c} vx_i \\ vy_i \\ vz_i \end{array} \right]$$

 Based on a set of observations (positions and speeds), one has to find a dynamical system which fits those observations. Suppose that N obervations are given:
 Positions:

$$\vec{X}_i = \left[\begin{array}{c} x_i \\ y_i \\ z_i \end{array} \right]$$

and speeds:

$$\vec{V}_i = \left[egin{array}{c} vx_i \\ vy_i \\ vz_i \end{array}
ight]$$

• A LMS precedure is applied in order to extract the matrix $\bf A$ and the vector \vec{B} .

Properties of the matrix A

• When real part of the eigenvalues of matrix **A** is positive, the system is in expansion mode and when they are negative, the system is in contraction mode.

Properties of the matrix A

- When real part of the eigenvalues of matrix A is positive, the system is in expansion mode and when they are negative, the system is in contraction mode.
- Furthermore, the imaginary part of such eigenvalues are related with curl intensity of the field.

Linear Dynamical System Modeling : An example

Linear Dynamical System Modeling : An example

Linear Dynamical System Modeling : An example

Linear Model limitations

• Give a global tendency of the traffic situation.

Linear Model limitations

- Give a global tendency of the traffic situation.
- Do not fit exactly with all traffic situations.

Linear Model limitations

- Give a global tendency of the traffic situation.
- Do not fit exactly with all traffic situations.
- ⇒ Non Linear Extension

$$\dot{\vec{X}} = \vec{f}(\vec{X})$$

Optimization problem

$$\dot{\vec{X}} = \vec{f}(\vec{X})$$

Optimization problem

• \vec{f} ? such that :

$$\textit{minE} = \sum_{i=1}^{i=N} \|\vec{V}_i - \vec{f}(\vec{X}_i)\|^2$$

$$\dot{\vec{X}} = \vec{f}(\vec{X})$$

Optimization problem

• \vec{f} ? such that :

$$minE = \sum_{i=1}^{i=N} \|\vec{V}_i - \vec{f}(\vec{X}_i)\|^2$$

and

$$\min \int_{\mathbb{R}^3} \|\Delta \vec{f}(\vec{x})\|^2 d\vec{x} \text{ with } \Delta \vec{f} = \begin{bmatrix} \frac{\partial^2 f_x}{\partial x^2} + \frac{\partial^2 f_x}{\partial y^2} + \frac{\partial^2 f_x}{\partial z^2} \\ \frac{\partial^2 f_y}{\partial x^2} + \frac{\partial^2 f_y}{\partial y^2} + \frac{\partial^2 f_y}{\partial z^2} \\ \frac{\partial^2 f_z}{\partial x^2} + \frac{\partial^2 f_z}{\partial y^2} + \frac{\partial^2 f_z}{\partial z^2} \end{bmatrix}$$

Exact Solution (Amodei)

$$ec{f}(ec{X}) = \sum_{i=1}^{N} \mathbf{\Phi}(\|ec{X} - ec{X}_i\|).ec{a}_i + \mathbf{A}.ec{X} + ec{B}$$

with

$$\Phi(\|\vec{X} - \vec{X_i}\|) = \mathbf{Q}(\|\vec{X} - \vec{X_i}\|^3)$$

and

$$Q = \left[\begin{array}{cccc} \partial_{xx}^2 + \partial_{yy}^2 + \partial_{zz}^2 & 0 & 0 \\ 0 & \partial_{xx}^2 + \partial_{yy}^2 + \partial_{zz}^2 & 0 \\ 0 & 0 & \partial_{xx}^2 + \partial_{yy}^2 + \partial_{zz}^2 \end{array} \right]$$

$$\dot{\vec{X}} = \vec{f}(\vec{X},t)$$

Optimization problem

$$\dot{\vec{X}} = \vec{f}(\vec{X}, t)$$

Optimization problem

 \bullet We are looking for \vec{f} such that :

$$\dot{\vec{X}} = \vec{f}(\vec{X}, t)$$

Optimization problem

ullet We are looking for \vec{f} such that :

•

$$minE = \sum_{i=1}^{i=N} \sum_{k=1}^{k=K} \|\vec{V}_i(t_k) - \vec{f}(\vec{X}_i, t_k)\|^2$$

$$\dot{\vec{X}} = \vec{f}(\vec{X}, t)$$

Optimization problem

ullet We are looking for $ec{f}$ such that :

•

$$minE = \sum_{i=1}^{i=N} \sum_{k=1}^{k=K} \|\vec{V}_i(t_k) - \vec{f}(\vec{X}_i, t_k)\|^2$$

and

$$\min \int_{\mathbb{R}^3} \int_t \|\Delta \vec{f}(\vec{x})\|^2 + \|\frac{\partial \vec{f}}{\partial t}\|^2 d\vec{x} dt$$

Exact Solution (Puechmorel and Delahaye)

$$\vec{f}(\vec{X},t) = \sum_{i=1}^{N} \sum_{k=1}^{K} \mathbf{\Phi}(\|\vec{X}(t) - \vec{X}_i(t_k)\|, |t - t_k|) . \vec{a}_{i,k} + \mathbf{A}. \vec{X} + \vec{B}$$

with

$$\Phi(r,t) = \operatorname{diag}\left(\frac{\sigma}{r}.\operatorname{erf}\left[\frac{r}{\sigma}.\frac{1}{\sqrt{2+\theta.|t|}}\right]\right)$$

Agenda

- Why complexity metrics are needed?
- Dynamical system modeling of aircraft trajectories
- How a complexity map is built?
- Results

Dynamical system trajectories

- Let $t \mapsto \gamma(t, s_0)$ be a nominal dynamical system trajectory (s_0 initial point)
- A perturbed trajectory is $t \mapsto \gamma(t, s)$ with $s \in V$ (V is an open neighborood of a given s_0).

How fast two neighboring dynamical system trajectories diverge ?

How fast two neighboring dynamical system trajectories diverge ?

• One has to compute the evolution of the distance to nominal trajectory with respect to time : $D(t,s) = ||\gamma(t,s_0) - \gamma(t,s)||$.

How fast two neighboring dynamical system trajectories diverge ?

• One has to compute the evolution of the distance to nominal trajectory with respect to time : $D(t,s) = ||\gamma(t,s_0) - \gamma(t,s)||$.

Computing D(t,s)

Main idea : when $t\mapsto \gamma(t,s)$ is the solution of a differential equation with initial condition $\gamma(0,s)=s$, it is possible to show that D itself satisfies a differential equation.

Local behaviour of trajectories

Local behaviour of trajectories

The variational equation

• $\gamma(t,s)$ being a flow :

$$\frac{\partial \gamma(t,s)}{\partial t} = F(t,\gamma(t,s)) \quad \gamma(0,s) = s$$

with F a smooth vector field.

Local behaviour of trajectories

The variational equation

• $\gamma(t,s)$ being a flow :

$$\frac{\partial \gamma(t,s)}{\partial t} = F(t,\gamma(t,s)) \quad \gamma(0,s) = s$$

with F a smooth vector field.

then divergence of nearby trajectories can be found by solving :

$$\frac{\partial D(t,s)}{\partial t} = DF(t,\gamma(t,s_0)).D(t,s) \quad D(0,s) = \|s-s_0\|$$

with DF the jacobian matrix of F (with respect to s).

The variational equation II

• If the three axis are considered simultaneously, the previous equation has the following matrix structure :

$$\frac{dM(t)}{dt} = DF(t, \gamma(t, s_0)).M(t) \quad M(0) = Id$$

This equation is called the variational equation of the flow.

The variational equation II

• If the three axis are considered simultaneously, the previous equation has the following matrix structure :

$$\frac{dM(t)}{dt} = DF(t, \gamma(t, s_0)).M(t) \quad M(0) = Id$$

This equation is called the variational equation of the flow.

 The variational equation describes in some sense the local linear approximation of the original non linear dynamical system.

The variational equation II

• If the three axis are considered simultaneously, the previous equation has the following matrix structure :

$$\frac{dM(t)}{dt} = DF(t, \gamma(t, s_0)).M(t) \quad M(0) = Id$$

This equation is called the variational equation of the flow.

 The variational equation describes in some sense the local linear approximation of the original non linear dynamical system.

Lyapunov exponents

The variational equation II

• If the three axis are considered simultaneously, the previous equation has the following matrix structure :

$$\frac{dM(t)}{dt} = DF(t, \gamma(t, s_0)).M(t) \quad M(0) = Id$$

This equation is called the variational equation of the flow.

 The variational equation describes in some sense the local linear approximation of the original non linear dynamical system.

Lyapunov exponents

• Let $U^t(t)\Sigma(t)V(t)=M(t)$ be the SVD decomposition of M(t).

◆□ ト ◆□ ト ◆ 重 ト ◆ 重 ・ 夕 Q (

The variational equation II

• If the three axis are considered simultaneously, the previous equation has the following matrix structure :

$$\frac{dM(t)}{dt} = DF(t, \gamma(t, s_0)).M(t) \quad M(0) = Id$$

This equation is called the variational equation of the flow.

 The variational equation describes in some sense the local linear approximation of the original non linear dynamical system.

Lyapunov exponents

- Let $U^t(t)\Sigma(t)V(t)=M(t)$ be the SVD decomposition of M(t).
- The Lyapunov exponents are limit values of the logarithms of the diagonal elements of $\Sigma(t)$.

Interpretation of Lyapunov exponents

 Given an initial point, the Lyapunov exponents and the associated SVD decomposition provide us with a decomposition of space in principal directions and corresponding convergence/divergence rate.

Interpretation of Lyapunov exponents

- Given an initial point, the Lyapunov exponents and the associated SVD decomposition provide us with a decomposition of space in principal directions and corresponding convergence/divergence rate.
- It is a localized version of the complexity based on linear systems.

Agenda

- Why complexity metrics are needed?
- Dynamical system modeling of aircraft trajectories
- How a complexity map is built ?
- Results

Results

Results

