Development of an Onboard Doppler LIDAR for Flight Safety

Hamaki Inokuchi and Hisamichi Tanaka (Japan Aerospace Exploration Agency)

Toshiyuki Ando (Mitsubishi Electric Corporation)

Contents

- Aviation Accidents
- Onboard Doppler LIDAR
- 1NM Model

- 3NM Model
- 5NM Model
- Plans for the Near Future
- Summary

(Parentheses are the number of personnel accidents)

Prior information

- •Weather forecast: Invalid for the small area on enroute
- •Weather RADAR: Invalid for the clear air turbulence
- Information from precedence: Invalid for the short time change

Damage reduction

- Seat belt: Difficulty in the cabin service
- Gust alleviation: Invalid for the initial shake
- Interruption of the cabin service: Much time is required
- Evasion flight: Prior reliable information is required

If turbulence is predicted beforehand, these measures become more effective.

LIDAR: Light Detection And Ranging

Overall Concept of the Onboard Wind Measurement LIDAR

Optical fiber amplifier

- Small: Optical devices are small, power-saving and a huge chiller is unnecessary
- High reliability: Dust-proofness and low EM noise
- Flexible layout : Separate installation is possible
- Eye safety: 1.5 μ m is the safest wavelength

Suitable as an onboard system

1NM Model

Signal processor

Optical

fiber

Installation (3NM Model)

2006

5NM Model

2007

Ground Test Result

Installation (5NM Model)

2008

	1NM	3NM	5NM
	model	model	model
	(2001)	(2006)	(2007)
Laser peak power	10 W	90 W	323 W
Laser pulse energy	4.5μJ	58 μ J	179μJ
Pulse repetition frequency	50 kHz	4 kHz	4 kHz
Aperture diameter	50 mm	110 mm	110 mm
Power consumption	420 W	306 W	374 W
Weight	105 kg	51 kg	82 kg

- Flight demonstration of the 5NM model is planned in March 2009
- Development of a 5NM high altitude model is planned in February 2009
- High altitude demonstration using a jet plane is planned in 2009

5NM high altitude model

2009

Optical antenna

- Turbulence accidents are frequent.
- Range of 3NM was demonstrated in flight.
- LIDAR has sufficient accuracy as a sensor.
- Range of 5NM was demonstrated on ground.
- Development of a high altitude model is

planned in FY 2008.

