A STUDY ON OPERATION CONCEPT FOR NEXT GENERATION AIR VEHICLES IN KOREA

February 20, 2013

Presented by Jae-Hyun HAN
Dept. of Aviation Policy and Technology
Korea Transport Institute (KOTI)
CONTENTS

1. INTRODUCTION

2. TRENDS OF PAV DEVELOPMENT

3. OPERATION CONCEPT for NEXT GENERATION AIR VEHICLES

4. CONCLUSION
1. INTRODUCTION
1. INTRODUCTION

- Entry of an aging society
- Improving income levels & Borderless globalization
- International network system
- Digital economy
- Convergence & complexity of technologies

Increase of Personal Mobility

Increased Anxiety about the Disaster

Expectation of Increased Level of Safety

Increase of Social Mobility

Activated Leisure

Source: Master Plan of Construction and Transportation Technology R & D projects (KICTEP)
1. INTRODUCTION

Air traffic growth
average annual rate : + 7.3%

Air traffic delays
Operational efficiency and aviation safety

Overland traffic congestion
Emergence of PAV

Problems due to traffic congestion

Transport efficiency
Increased traffic congestion costs

- Limited road conditions, traffic congestion → Moving speed lower/ fuel consumption increased
 - Cost of road traffic congestion : ~ $24 billion (2008 in Korea)
 - Total population : 48.5 m (2008)
 - Annual Traffic congestion cost : 50 $/person
 - No. of Vehicle Registration : 16.4 m (2008)
 - Annual Traffic congestion cost : 150 $/vehicle

Cost of road traffic congestion : ~ $24 billion (2008 in Korea)
1. INTRODUCTION

Number of vehicles registration

![Number of vehicles registration chart](chart.png)

Source: The ROK Ministry of Land Transport and Maritime Affairs

Annual Traffic Congestion Cost

![Annual Traffic Congestion Cost chart](chart.png)

Source: The ROK Ministry of Land Transport and Maritime Affairs
1. INTRODUCTION
2. TRENDS OF PAV DEVELOPMENT
2. TRENDS OF PAV DEVELOPMENT

International Trend

- **NASA Concept of PAV**
 - In the 2005 Centennial Challenge initiative in conjunction with the CAFE Foundation, NASA has proposed the definition of a PAV as follows:
 - Seats 2 to 6 passengers, 240–320 km/h cruising speed
 - Quiet, comfortable and reliable
 - Able to be flown by anyone with a driver’s license
 - As affordable as travel by car or airliner.
 - Near all-weather capability enabled by synthetic vision systems
 - Highly fuel efficient (able to use alternative fuels).
 - 1,300 km range.
 - Provide "door-to-door" travel capabilities

- **AGATE/PAVE/SATS programs**
 - AGATE and PAVE programs performed by NASA for developing the core technologies of small aircrafts to provide safer, more convenient and comfortable air transport
 - SATS Program performed by FAA applying free flight concept for point to point air transport
2. TRENDS OF PAV DEVELOPMENT

- **NextGen**
 - JPDO (Joint Planning and Development Office) set up in 2005
 - To cope the air traffic demand of 2-3 times increase up to 2025
 - Air traffic infrastructure implementation plan
 - To improve safety and capacity of Airspace and Airport

Source: FAA NextGen
2. TRENDS OF PAV DEVELOPMENT

International Trend

- SESAR (Europe)
- Key Performance Targets in 2020
 - To enable 3 times increase in capacity
 - To improve safety 10 times
 - To reduce by 10% environmental impact per flight
 - To cut ATM cost by 50%

Source: SESAR In Brief, General Overview, 2009

- CARATS (Japan)

SESAR, an ambitious phased programme

→ The SESAR Definition Phase (2005-2008) delivered the SESAR ATM Master Plan. It was developed by a representative group of ATM stakeholders. The plan, based on future aviation requirements, identified the actions, from research to implementation, needed to achieve SESAR goals.

→ The SESAR Development Phase (2008-2013) will produce the required new generation of technological systems, components and operational procedures as defined in the SESAR ATM Master Plan and Work Programme.

→ The SESAR Deployment Phase (2014-2020) will see the large-scale production and implementation of the new air traffic management infrastructure, composed of fully harmonised and interoperable components guaranteeing high-performance air transport activities in Europe.
2. TRENDS OF PAV DEVELOPMENT

- **KOREA AEROSPACE RESEARCH INSTITUTE (2010)**
 - Preliminary study on PAV has been performed under the program of the ROK Ministry of Knowledge Economy (MKE).
 - Roadmap for the development of PAV has been set up to 2030 focused on the development of air vehicles.

- **THE KOREA TRANSPORT INSTITUTE (2011)**
 - Master plan study on the infrastructure for the PAV operation has been performed under the program of the ROK Ministry of Land Transport and Maritimes Affairs.
 - Operating type of PAVs has been classified into 2 modes.
 - Operation concept for the near-term, the mid-term and the long-term has been developed in the frame of the development stage of PAVs.
3. OPERATION CONCEPT FOR NEXT GENERATION AIR VEHICLES

3.1 Scenario for PAV Operation
3.2 Phase 1 operation concept
3.3 Phase 2 operation concept
3.1 Scenario for PAV Operation

Conventional take-off and landing PAV
- Mainly flying, possible to drive
- Operated environment friendly/economically
- Relatively long-haul flight

Short/Vertical take-off and landing PAV
- High space-utilization
- Operated simply
- More expensive than CTOL

Image sources: Terrafugia Transition, Paul Moller’s skycar etc.
3.1 Scenario for PAV Operation

<table>
<thead>
<tr>
<th></th>
<th>Phase 1</th>
<th>Early Phase 2</th>
<th>Late Phase 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Type of PAV</td>
<td>CTOL</td>
<td>STOL+VTOL</td>
<td>STOL+VTOL</td>
</tr>
<tr>
<td>Operation Mode</td>
<td>Single Mode</td>
<td>Single Mode</td>
<td>Dual Mode</td>
</tr>
<tr>
<td>Accessibility</td>
<td>City to City</td>
<td>Zone to Zone</td>
<td>Door to Door</td>
</tr>
<tr>
<td>Airfield Size</td>
<td>PAV airfield with runway</td>
<td>Vertical take-off and landing airfields (reduced in size), building rooftops, etc.</td>
<td>Private residential yards, building rooftops, etc.</td>
</tr>
<tr>
<td>ATS</td>
<td>Manned</td>
<td>Unmanned</td>
<td>Unmanned</td>
</tr>
<tr>
<td>Pilot</td>
<td>Manned</td>
<td>Manned</td>
<td>Manned (Road)/Automated (Sky)</td>
</tr>
</tbody>
</table>
3.2 Phase 1 operation concept

- **“See and Avoid” Operational Concept**
 - Similar to the operation for the light aircraft and ultra-light aircraft.
 - Visual flight rules and air traffic services with current air traffic control procedures.
 - Conventional infrastructure: aerodromes, taking-off and landing facilities, designated airspace for light and ultra-light aircrafts in Korea.
3.3 Phase 2 operation concept

- Door to Door
- Unmanned Control Tower
- Unmanned pilot
- Manned pilot
- Automatic en-route flight
- Airfield entry and Unfolding wings, Takeoff
- Satellite based Surveillance
- Landing, Folding wings and drive on the road
- Vertical Takeoff on Own yard
- Vertical Landing on Own yard

- "Detect, Sense and Avoid "Operational Concept
 - Ultimately, based on the concept and technologies for free flight.
 - Concept of highway in the sky with automatic air traffic service
 - Operated in vertical taking-off and landing mode and both on the ground and in the air.
4. CONCLUSION
4. CONCLUSION

- Emergence of New means of transportation
 - Traffic congestion, New technologies, Convergence of vehicle + aircraft
 - Types of PAV operation
 - Single mode (flying only)
 - Dual mode (flying and driving)

- Operation Concept
 - Operation concept for PAVs
 - Phase I (short term) : “see and avoid” under controller’s ATS
 - Phase 2 (long term) : “detect, sense and avoid” under automatic ATS
 - Accessibility to Destination improved (door to door).
Thank You!

The Korea Transport Institute (KOTI)
Dept. of Aviation Policy and Technology