Study on Traffic Synchronization

Claus Gwiggner
Masato Fujita
Yutaka Fukuda
Sakae Nagaoka

Electronic Navigation Research Institute
Tokyo

EIWAC, Tokyo, November, 2010.
Contents

1. Traffic Synchronization
2. Delay propagation
3. Delay absorption
4. Conclusions
Airspace Congestion

Figure: Inefficient arrival flow to Tokyo Int'l Airport

- Delay
- Fuel consumption
- Controller workload
Airspace Congestion

1. Traffic Synchronization

Traffic Synchronization

Definition: “Tactical establishment and maintenance of a safe, orderly and efficient flow of air traffic.” [ICAO]

Benefits:
- Less delay
- Less fuel consumption
- Less controller workload

[ICAO 2005, SESAR, NextGen]
Concept of Operations

“Controlled time of arrival” (CTA)

Target precision: +/- 10 sec

Current precision: +/- 30 sec

Window size: [cta-x, cta+x] sec

Window position:
- between sectors
- on waypoints
- on merge-points
(...)

Flight Trials:
CTA/ATC system integration studies (CASSIS)

Simulation studies:
Contract-based Air Transportation System project (CATS)

[CASSIS 09, CATS 08]
Concept of Operations

“Controlled time of arrival” (CTA)

Open questions

- Feasibility ?
- Number of constraints ?
- Impact of uncertainty

Flight Trials:
CTA/ATC system integration studies (CASSIS)

Simulation studies:
Contract-based
Air Transportation System project (CATS)

Window size: [CTA-x, cta+x] sec
Window position:
- between sectors
- on waypoints
- on merge-points
(...)

1. Traffic Synchronization

[CASSIS 09, CATS 08]
Delay Propagation under uncertainties

\[\eta_{i-1} - \eta_i = \max(\eta_i - a_i + m_i, 0) \]

Queueing Delays

<table>
<thead>
<tr>
<th>Aircraft</th>
<th>eta</th>
<th>stay delay</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>12:01</td>
<td>12:01</td>
</tr>
<tr>
<td>B</td>
<td>12:02</td>
<td>12:03</td>
</tr>
<tr>
<td>C</td>
<td>12:05</td>
<td>12:07</td>
</tr>
</tbody>
</table>

[Erzberger 95, Bayen 06, Balakrishnan 09]
Delay Propagation

under uncertainties

Profile plot

- High altitude delay absorption (fuel efficient)
 \[(1 - \alpha)d_i\]
- Low altitude delay absorption (fuel inefficient)
 \[\alpha d_i\]
- Top of descent (TOD)
- Optimal descent

\[d_i: \text{queueing delay of aircraft i}\]
\[\alpha: \text{absorption coefficient} \quad 0 \leq \alpha \leq 1\]
\[c_h, c_l: \text{delay absorption costs} \quad c_h \leq c_l, \ [\text{min}^{-1}]\]

Aircraft Schedule

<table>
<thead>
<tr>
<th>Aircraft</th>
<th>eta</th>
<th>sta delay</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>12:01</td>
<td>12:01</td>
</tr>
<tr>
<td>B</td>
<td>12:02</td>
<td>12:03</td>
</tr>
<tr>
<td>D</td>
<td>12:04</td>
<td>12:05</td>
</tr>
<tr>
<td>C</td>
<td>12:05</td>
<td>12:07</td>
</tr>
</tbody>
</table>

Queueing Delays

[Erzberger 95, Bayen 06, Balakrishnan 09]
Delay Propagation under uncertainties

d_i : queueing delay of aircraft i

α : absorption coefficient

$0 \leq \alpha \leq 1$

c_h, c_l : delay absorption costs

$c_h < c_l, \ [\text{min}^{-1}]$

Profile plot

Top of descent (TOD)

Optimal descent

Remaining delay on low altitude

High altitude delay absorption (fuel efficient)

$(1 - \alpha)d_i$

Low altitude delay absorption (fuel inefficient)

αd_i

Delayed arrival at TOD

Gate

Time plot

Actual time of arrival at TOD

Scheduled time of arrival at TOD

α

αd_i

Delay absorption cost

$(1 - \alpha)d_i$

$c_i = [(1 - \alpha)c_h + \alpha c_l]d_i$

Delay absorption

Cost:

c_h

Cost:

c_l

<table>
<thead>
<tr>
<th>Aircraft</th>
<th>eta_{sta}</th>
<th>eta_{sta} delay</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>12:01</td>
<td>12:01</td>
</tr>
<tr>
<td>B</td>
<td>12:02</td>
<td>12:03</td>
</tr>
<tr>
<td>D</td>
<td>12:04</td>
<td>12:05</td>
</tr>
<tr>
<td>C</td>
<td>12:05</td>
<td>12:07</td>
</tr>
</tbody>
</table>

Queueing Delays

[Erzberger 95, Bayen 06, Balakrishnan 09]
Delay Propagation
under uncertainties

Profile plot

Time plot

$\eta_{\text{D}} = \eta_{\text{C}}$

$\text{Aircraft} \quad \eta_{\text{A}} \quad \eta_{\text{B}} \quad \eta_{\text{C}}$

<table>
<thead>
<tr>
<th>Aircraft</th>
<th>η_{A}</th>
<th>η_{B}</th>
<th>η_{C}</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>12:01</td>
<td>12:01</td>
<td>0</td>
</tr>
<tr>
<td>B</td>
<td>12:02</td>
<td>12:03</td>
<td>1</td>
</tr>
<tr>
<td>D</td>
<td>12:04</td>
<td>12:05</td>
<td>1</td>
</tr>
<tr>
<td>C</td>
<td>12:05</td>
<td>12:07</td>
<td>2</td>
</tr>
</tbody>
</table>

Queueing Delays

[Erzberger 95, Bayen 06, Balakrishnan 09]
Delay Propagation
under uncertainties

2. Delay Propagation

Profile plot

High altitude delay absorption (fuel efficient)
(1 − α)di

Low altitude delay absorption (fuel inefficient)
αdi

Top of descent (TOD)
Optimal descent
Remaining delay on low altitude

di: queueing delay of aircraft i
α: absorption coefficient
0 ≤ α ≤ 1
ch, cj: delay absorption costs
ch < cj, [min⁻¹]

Scheduled time of arrival
at TOD

Actual time of arrival
at TOD

High altitude delay absorption

Low altitude delay absorption

Cost:

Delay absorption cost

(1 − α)di
αdi

ci = (1 − α)ch + α cj di

Delay absorption cost

Gate

Time plot

sta

ata

(stated)

 ata

(scheduled)

sta

ata

(stated)

ata

Aircraft	eta	sta eta	delay
A | 12:01 | 12:01 | 0 |
B | 12:02 | 12:03 | 1 |
D | 12:04 | 12:05 | 1 |
C | 12:05 | 12:07 | 2 |

Queueing Delays

[Erzberger 95, Bayen 06, Balakrishnan 09]
2. Delay Propagation

Delay Propagation
under uncertainties

Profile plot

Time plot

Queueing Delays

<table>
<thead>
<tr>
<th>Aircraft</th>
<th>eta</th>
<th>sta delay</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>12:01</td>
<td>12:01</td>
</tr>
<tr>
<td>B</td>
<td>12:02</td>
<td>12:03</td>
</tr>
<tr>
<td>C</td>
<td>12:05</td>
<td>12:07</td>
</tr>
</tbody>
</table>

{\(d_i\): queueing delay of aircraft \(i\)}
{\(\alpha\): absorption coefficient}
{\(0 \leq \alpha \leq 1\)}

\(c_h, c_i\): delay absorption costs
\(c_h < c_i\), [min\(^{-1}\)]

\(\alpha d_i\) Delay absorption cost

\((1-\alpha)d_i\) Delay absorption cost

High altitude delay absorption (fuel efficient)
\((1-\alpha)d_i\)

Low altitude delay absorption (fuel inefficient)
\(\alpha d_i\)

Profile plot

Time plot

Queueing Delays

[Erzberger 95, Bayen 06, Balakrishnan 09]
Delay Propagation
under uncertainties

Traffic Synchronization Problem

Given:
Flow of pre-scheduled aircraft $sta_1 < sta_2 < ... < sta_n$ with queueing delays d_i and trajectory prediction errors ϵ_i.

Find:
Optimal delay absorption strategy.

Queueing Delays

Table:

<table>
<thead>
<tr>
<th>Aircraft</th>
<th>eta_{ata} (actual)</th>
<th>$\text{sta}_{\text{delay}}$ (re-scheduled)</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>12:01</td>
<td>12:01, 0</td>
</tr>
<tr>
<td>B</td>
<td>12:02</td>
<td>12:03, 1</td>
</tr>
<tr>
<td>C</td>
<td>12:05</td>
<td>12:07, 2</td>
</tr>
<tr>
<td>D</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Leader

<table>
<thead>
<tr>
<th>Follower</th>
<th>Leader</th>
<th>Heavy</th>
<th>Mid/Small</th>
</tr>
</thead>
<tbody>
<tr>
<td>Heavy</td>
<td>90</td>
<td>120</td>
<td></td>
</tr>
<tr>
<td>Mid/Small</td>
<td>60</td>
<td>60</td>
<td></td>
</tr>
</tbody>
</table>

Delay propagation

[Erzberger 95, Bayen 06, Balakrishnan 09]
Main Results

Speed control delay

\[\Delta_j \geq w_i - \frac{x_{j0} - lx_{i0}}{l v_i} + \frac{s_e}{k_i v_i} \]

with \(\Delta_j \): speed control delay for aircraft \(j \)

\(w_i \): metering delay for aircraft \(i = j-1 \)

Average propagated delay (normalized)

\[E(D_i) = \sum_{k=0}^{\infty} (k+1) \int_{u=0}^{\infty} \int_{v=0}^{u/\alpha} (u - \alpha v) P(k | u, v) f(u) g(v) dv du \]

with

\(f, g \): probability density function of \(\epsilon, d \)

\(P \): distribution of length of propagation

[Gwiggner et al. 09, 10]
Main Results

In words:

Speed control itself causes no delay propagation.

The reason for delay propagation: trajectory prediction errors

\[\Delta_j \geq w_i - \frac{x_{j0} - lx_{i0}}{lv_i} + \frac{s_e}{k_i v_i} \]

with \(\Delta_j \): speed control delay for aircraft \(j \)
\(w_i \): metering delay for aircraft \(i = j-1 \)

\[E(D_i) = \sum_{k=0}^{\infty} (k+1) \int_{u=0}^{\infty} \int_{v=0}^{u/\alpha} (u - \alpha v) P(k \mid u, v) f(u) g(v) dvdu \]

with

\(f, g \): probability density function of \(\epsilon, d \)
\(P \): distribution of length of propagation

[Gwiggner et al. 09, 10]
Delay absorption strategy

\[c(\alpha) = [c_L \alpha + c_H (1 - \alpha)]d(\alpha) \]

\[d(\alpha) = d_0 + d_p(\alpha), \]

where
\[c_L \gg c_H : \text{cost of delay absorption (kg/min)} \]
\[d_0 : \text{average queueing delay} \]
\[d_p(\alpha) : \text{propagated delay} \]

- **Delay absorption strategy**
- **Trade-off**
- **Fuel efficiency**
- **Workload sharing**

Consequences:
- Even in the future, there is a need for radar vectoring.
- Sequencing strategies under uncertainties should be studied.
Conclusions

- Traffic Synchronization
 - Tactical management of queues of aircraft
- Delay Propagation
 - Delay propagation due to trajectory prediction errors
- Delay absorption strategy
 - Trade-off between high altitude (fuel efficient) and low altitude (fuel inefficient)
 - Even when the objective is to minimize fuel (!)
Future work

- Fundamental Research
 - Conditions for existence of minimum
 - Delay propagation in transportation networks
- Operational Concept
 - Ground delay vs. en-route delays
 - Delay management strategies
Thank you.

claus@enri.go.jp
Traffic Synchronization

Global ATM Concept (ICAO)

Traffic Synchronization
- Departure
- Arrival
- Interaction

Demand/Capacity Balancing

Conflict Management

Traffic Management Coordinator (TMC)

Air Traffic Controller (ATCo)

ATM PLANNING PHASES

Years
- Long Term
- Mid/Short Term

Tactical phase

[ICAO 2005, ATM Masterplan]
Aircraft sequencing

Basic Operations

- Sequencing
 - First-come-first-served (FCSF)
 - Constrained position shifting (CPS)

- Metering
 - Flow control with separation constraints m_i

Queueing Delay

<table>
<thead>
<tr>
<th>Aircraft</th>
<th>eta</th>
<th>sta</th>
<th>delay</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>12:01</td>
<td>12:01</td>
<td>0</td>
</tr>
<tr>
<td>B</td>
<td>12:02</td>
<td>12:03</td>
<td>1</td>
</tr>
<tr>
<td>D</td>
<td>12:04</td>
<td>12:05</td>
<td>1</td>
</tr>
<tr>
<td>C</td>
<td>12:05</td>
<td>12:07</td>
<td>2</td>
</tr>
</tbody>
</table>

FCFS delay: 4 min
CPS delay: 3.2 min

$\text{FCFS delay: } d_{i+1} = \max(d_i - a_i + m_i, 0)$

$\text{CPS delay: } d_i = \max(d_i - a_i, 0)$

m_i, m_{i-1}

Table:

<table>
<thead>
<tr>
<th>m_i</th>
<th>Follower</th>
</tr>
</thead>
<tbody>
<tr>
<td>Leader</td>
<td>Heavy</td>
</tr>
<tr>
<td>Heavy</td>
<td>90</td>
</tr>
<tr>
<td>Mid/Small</td>
<td>60</td>
</tr>
</tbody>
</table>

[Erzberger 95, Bayen 06, Balakrishnan 09]
2. Delay propagation

Condition for delay propagation:

\[\epsilon_i \geq \alpha d_i \]
\[(\epsilon_i - a_i) \geq \alpha d_{i+1} \]

... \[(\epsilon_i - a_i) - \sum_{j=1}^{k} a_{i+j} \geq \alpha d_{i+k+1} \quad (1) \]

Delay triggered by aircraft \(i \):

\[D_{p,i} = \left[k (\epsilon_i - a_i) - (k-1)a_{i+1} - ... - a_{i+k} \right] - \alpha \sum_{j=0}^{k} d_{i+j+1} \quad (2) \]

\[= k \epsilon_i - \sum_{j=0}^{k} (k-j)a_{i+j} - \alpha \sum_{j=0}^{k} d_{i+j+1} \quad (3) \]

where \(k \) is smallest number, such that (1) is smaller than \(d_k \)

Propagation approximation (high-congestion):

\[D_{p,i} \approx \begin{cases} (n-i)(\epsilon_i - \alpha d_i), & \epsilon_i \geq \alpha d_i \\ 0, & \text{else} \end{cases} \quad (4) \]

Expectation:

\[E(D_{p,i}) = (n-i) \int_{u=0}^{\infty} \int_{v=0}^{u/\alpha} (u-\alpha v)f(u)g(v) dv du \quad (5) \]

with \(f, g \): probability density function of \(\epsilon, d \)