番号	課題名	内 容	担当領域	受入人数	参加要件	期間	備考
1	滑走路異物監視システムの データ分析	滑走路異物監視システムについて、原理学習および データ分析の実習を行う。	監視通信領域		Word、Excel、PowerPointを使用可能であること。	2週間	
2		飛行中の航空機は地上設備との無線通信により 様々な情報をやり取りしている。例えばADS-Bや DAPsと呼ばれるシステムでは位置情報や飛行速度な どが得られる。本課題では、このような無線通信を対 象としてAI・機械学習、異常検知、方向探知などの応 用に挑戦する。	監視通信領域		プログラミング言語(C、Python、Java、 MATLAB等)の基本について学習経験を 有すること。	2週間	
3	CLAS測位のセットアップと特徴に関するレポート	みちびきCLAS L6受信モジュール、GNSS受信モジュール、GNSSアンテナ等を組合せ、センチメータ級測位を行う。また、受信データを解析し、他の補強方法との特徴の違いを示すプレゼンテーションを実施する。	航法システム領域	1名	・PowerPoint、Excel、Wordを使用可能であること。 ・プログラミング言語の基礎的な経験を有すること。	1~2週間	
4		実験用航空機で取得したARINC429バスデータの解析を行う。GLS進入時に取得したデータとILS進入時に取得したデータを比較し、それぞれの特徴についてまとめる。		1名	・グラフ描画ソフトあるいはExcelによるグラフ作成ができること ・C言語などで簡単なプログラムミングができること	1~2週間	