6. 航空機内データ通信における国際標準化動向および電磁環境評価

監視通信領域 ※二ッ森 俊一, 森岡 和行, 河村 暁子, 米本 成人 北海道大学 大学院 情報科学研究院 日景 隆, 関口 徹也, 野島 俊雄

1. はじめに

2015年に開催された世界無線通信会議 (WRC-15)において,電波高度計に割り当て られている4GHz帯(4.2GHz-4.4GHz)を 航空機内データ通信(Wireless Avionics Intra-Communications, WAIC)にも配分すること が決議された。WAIC機器は航空機内の配線を 無線化することで航空機の重量低減を図り, 運航の効率化を目指すことを主な目的の一つ としている。一方で,既存の電波高度計と同一 の周波数を用いることから,WAIC機器と電波 高度計との共用条件の策定が必須である。著 者らは共用条件を明らかにし,互いに円滑に 運用を可能とするための電磁環境評価技術お よび通信技術の研究開発を実施している。

本稿では,著者らも参加している WAIC 機器の国際標準化動向を述べた上で,航空機電 波高度計と WAIC 機器の周波数共用条件策定 に寄与する大規模数値解析技術および測定評 価結果について述べる。まず,大型航空機にお いても WAIC 機器からの詳細電磁界放射特性 を評価可能な技術として,大規模電磁界数値 解析法を用いた,エアバス A320-200 型機の WAIC 周波数帯における電磁界数値解析の結 果例を示す。また,WAIC 機器の耐電磁干渉特 性を検討するため,電子航法研究所のビーチ クラフト B300 型機を用いて実施した,電波高 度計地上放射特性測定の結果例を示す。

2. WAIC 機器の国際標準化動向

WRC-15 での周波数割り当てを受け, RTCA (米国航空無線技術委員会)では, WAIC 機器 の実現に向けて, 必要となる国際的標準や技 術指針等を検討するための特別委員会 236 (SC-236)を 2016 年 9 月に設置した。また,
EUROCAE (欧州民間航空装置機構)では, 96 作業班 (WG-96)が WAIC を含む Wireless On

Board Avionics Network (WOBAN)の検討 を 2013 年から検討していた。このため, RTCA

3次元数値モデル

と EUROCAE は 2016 年 9 月から合同で MASPS (最低性能要件) および MOPS (最低 運用要件)を策定するための委員会/作業班を 開催している。さらに、ICAOのFSMP(周波 数管理パネル)では電波高度計と WAIC 機器 に関する共用条件に関する SARPs (標準およ び勧告方式)の策定作業が実施されている。 MASPS では、①自機の WAIC 機器が他機の 電波高度計に影響を及ぼさないため WAIC 機 器の放射電力密度制限を行うこと, ②自機の WAIC 機器が他機の電波高度計と WAIC 機器 から影響を受けないこと,の2点について検 証法を含めた基準が示されている。ICAO SARPs は共用条件について, MASPS を直接 引用するため、協調して作業が進められてお り, MASPS は 2019 年上期の発行が予定され ている。また,最終的な MOPS 策定完了は, 2021 年 10 月が目標である。これらの活動に は航空機製造メーカおよびアビオニクスメー カ等が参加している。

3. 大型航空機の4 GHz 帯電波伝搬推定

WAIC 周波数帯において適用可能な航空機 電磁界電波伝搬特性の推定技術として,大規 模電磁界数値解析技術を用いた解析推定法に ついて述べる[2],[3]。数値解析を用いて航空 機電波高度計や WAIC 機器の詳細な電波伝搬 推定を行うものであり,今後大型航空機の測

25

図 2 エアバス A320-200 型機の機内モデル

解析空間 (mm ³)	18,125 × 12,245 × 37,625
セルサイズ (mm)	5
解析セル数	3,625 × 2,449 × 7,525
周波数 (GHz)	4.4
吸収境界条件	Convolutional perfectly
	matched layer (10 layers)
解析ノード数	40
必要解析メモリ	6,400 GB
アンテナ	1/2 dipole
	(0.1 W input power)

表1 FDTD 数値解析パラメータ

結果と比較する予定である。時間領域差分法 (Finite-Difference Time-Domain method,

FDTD)を用い,図1および図2に示すエアバ スA320-200型機の3次元数値モデルを用い た電磁界数値解析を行う。この3次元数値モ デルは機内構造も含み,座席,パーティション, ラバトリー,荷物入れ,窓,床,および内装材 等を有している。

送信アンテナは機内最前列通路中央部,高 さ1mに設置した2分の1波長ダイポールア ンテナである。表1に,数値解析パラメータを 示す。全領域に対して5mm³の均一立方体セ ルを用いて解析を行う。解析に必要な主記憶 容量を減らすため,導体中央部に磁気壁を設 置する。この解析領域は40個のエリアに分割 して計算され,吸収境界を含むセル数は合計 で3,625×2,449×7,525である。また,解析に必 要な主記憶容量は約6.4TBである。

図 3 (a) および (b) に, ぞれぞれ (a) ア ンテナ設置位置および (b) 機体中央について,

図 3 xy 平面における 2 次元電界強度分布の 解析結果例 (a) アンテナ設置位置(b) 機体中央

図 4 yz 平面における 2 次元電界強度分布 の解析結果例

xy 平面における 2 次元電界強度分布の解析結 果例を示す。図 3 (a) からアンテナから放射 された電磁界が航空機の窓を通して機外へ伝 搬する様子が確認できる。また,図 3 (b) か ら機体中央部においては,窓から外部に伝搬 した電磁波が主翼に反射し,複雑に伝搬する 様子が確認できる。さらに,図4 に yz 平面に おける 2 次元電界強度分布の解析結果例を示 す。これらの結果から,WAIC 周波数帯におけ る大型航空機の電磁界伝搬特性について,詳 細に推定可能なことを明らかにした。今後,本 推定法は WAIC 機器からの電磁界放射定量化 に活用する予定である。

4. 電波高度計の地上放射特性測定

26

次に,航空機電波高度計とWAIC機器の周 波数共用検討を実施するための実測基礎デー タとして,電子航法研究所のビーチクラフト

19-05-113_本文.indd 26

電波高度計型名	Rockwell Collins ALT-1000	
送信中心周波数	4.3 GHz	
送信信号带域幅	100 MHz	
送信信号電力	27 dBm	
測距方式	FMCW	
送信アンテナ利得	9.5 dBi	

表2 ビーチクラフト B300 型機搭載の 雷波高度計およびアンテナ仕様

図5 ビーチクラフト B300 型機の電波高度計 放射特性測定における測定ポイント

B300 型機に搭載している電波高度計の地上 放射特性を測定評価する。表2に、それぞれビ ーチクラフト B300 型機搭載の電波高度計仕 様を示す。機体胴体下部に、それぞれ独立した 送受信アンテナを有し、直線偏波で送信アン テナの利得は9.5 dBi である。アンテナ主放射 方向は地上との距離を測定するために、真下 方向である。また、電波高度計は中心周波数 4.3 GHz において帯域幅 100 MHz の FMCW 信号を送受信し、航空機と地上の高度を測定 する機能がある。

図 5 および表 3 に, それぞれビーチクラフ ト B300 型機の電波高度計の放射特性測定に おける測定ポイントおよび測定パラメータを 示す。ここでは,機体の物理中心を基準とした 円周上の測定ポイントにおいて, 11.25 度間隔 で電界強度を取得する。また,半径は機体の最 大寸法となる主翼長 17.65 m の 1.5 倍の 26.5 m とする。また,受信アンテナは, Schwarzbeck 社製ログペリオディックアンテ

衣う 电波向反乱放射特性测定ハノメータ		
測定半径	26.5 m	
測定角度ステップ	11.25 度	
受信アンテナ型名	Schwarzbeck	
	USLP9143	
受信アンテナ利得	5.2 dBi (4.3 GHz)	
受信アンテナ偏波	垂直および水平	
受信アンテナ設置高	1.35 m, 2.35 m, 3.35 m	
スペクトラム	Keysight technologies	
アナライザ型名	N9912A	
スペクトラム	最大値保持1分間	
アナライザ設定		
路面状況	乾燥	

表3 電波高度計放射特性測定パラメー

図6 航空機電波高度計の地上放射特性 測定状況

ナを用い, アンテナ利得は 4.3 GHz において 5.2 dBi である。測定偏波は垂直および水平の 両偏波で行い, 受信アンテナ設置高さは, 1.35 m(航空機窓中心高-1 m), 2.35 m(航空機窓 中心高), 3.35 m(航空機窓中心高+1 m)の3 種類である。

図6に、地上放射特性測定状況を示す。測定 は仙台空港の電子航法研究所エプロンにおい て実施し、エプロン路面は乾燥状態である。 図7(a)、(b)および(c)に、ビーチクラフ トB300型機の電波高度計放射特性の測定結 果を示す。それぞれ異なる高さにおいて受信 した電界強度値を示している。いずれの高さ においても機体右側の電界強度値が高くなっ ている。これは電波高度計の送信アンテナが 胴体中心から若干右側にオフセットしている

27

図 7 ビーチクラフト B300 型機の電波高度計 放射特性結果例(電界強度)

ためである。一方,いずれの高さにおいても90 度方向において電界強度値の落ち込みが観測 されているが,これは図6に示すように,電波 高度計に電源を供給するための電源車を設置 したためである。概ね垂直偏波の方が電界強 度値は高く,アンテナ設置高が低いほど高電 界強度値が得られた。垂直偏波では,それぞれ の測定高において最大電界強度は 98.9 dBµV/m(1.35 m),94.8 dBµV/m(2.35 m), 93.9 dBµV/m(3.35 m)である。今後,本測定 結果を WAIC 機器の耐電磁干渉特性の検討に 活用する予定である。

5. まとめ

WAIC機器の国際標準化動向を述べた上で, 著者らの実施している WAIC 周波数帯電磁環 境評価技術の研究開発について議論を行った。 まず,大規模電磁界数値解析法を用い,エアバ スA320-200 型機の WAIC 周波数帯における 詳細な電磁界伝搬特性を明らかにした。さら に,ビーチクラフト B300 型機に搭載されてい る電波高度計の地上放射特性を測定評価し, 周囲における電界強度を評価した。これらは, WAIC 機器からの電磁界放射定量化および WAIC 機器の耐電磁干渉特性の検討に活用す る予定である。今後、WAIC 周波帯における機 内伝搬特性評価および WAIC 機器から電波高 度計への干渉経路損失評価を実施する。

参考文献

[1] International Telecommunication Union, "Technical characteristics and operational objectives for wireless avionics intracommunications (WAIC)," Report M.2197-0, Nov. 2011.

[2] T. Sekiguchi et. al, "A large scale FDTD analysis of propagation characteristics for wireless link design of 4.4 GHz-band WAIC installed on passenger aircraft," Proceedings of the 2018 IEEE AP-S/URSI, FR-UB.5P.4, July 2018.

[3] S. Futatsumori et. al, "Point source transmitting power estimation of Wireless Avionics Intra-Communication systems using the large-scale FDTD method", Proceedings of the 35th International Review of Progress in Applied Computational Electromagnetics, pp.1-2, Apr 2019.

28