

アジア太平洋地域GBAS電離圏 脅威モデル *<u>齋藤 享</u>、吉原 貴之、坂井 丈泰 電子航法研究所 航法システム領域

本研究は、ICAOアジア太平洋地域電離圏問題検討状況タスクフォース(Ionospheric Studies Task Force)参加者の協力及び各国のデータ提供に基づいて行われた

* 電離圏

- ★ 電離圏と衛星航法、GBAS
- ★ GBASと電離圏脅威モデル
- ★ ICAOアジア太平洋地域における電離圏データ収集・共有・ 解析
 - 電離圈勾配解析
 - アジア太平洋地域共通GBAS電離圏脅威モデル

* 今後の方針

- アジア太平洋地域モデルの日本への最適化

* 電離圏:高度約60km~1000kmに存在する電離

した地球大気 (プラズマ)

- 時刻、緯度、経度、季節、太陽活動度などに よって大きく変動する
 - 地理緯度よりも磁気緯度に依存する
- 磁気緯度±15°付近に密度ピーク(赤道異常)
- 日本は地磁気的、電離圏的には低緯度

衛星航法と電離圏 - 電離圏遅延

60°

 40°

20

-20°

-40°

-60°

Vertical delay (m)

20

10

* 航空機は地上基準局で生成した補正情報を適用して測位

- * 航空機は地上基準局で生成した補正情報を適用して測位
- * 基準局と航空機で電離圏遅延量が異なる場合に誤差の可能性

- * 航空機は地上基準局で生成した補正情報を適用して測位
- * 基準局と航空機で電離圏遅延量が異なる場合に誤差の可能性
 - ➡ 事前に電離圏変動の範囲を調べておくことが必要(電離圏 脅威モデル) _{平成29年度電子航法研究所研究発表会(平成29年6月8~9日)}

米国本土(CONUS) モデル

パラメータ	値の範囲	
幅 (w)	25-200 km	
変動幅 (D)	0-50 m	
移動速度 (v)	0-750 m/s	
勾配 (g)	衛星仰角に依存	

衛星仰角 (EL)	勾配最大值 (g)		
EL < 15°	375 mm/km		
I5 ≤ EL < 65	375 + (EL-15) mm/km		
65 ≤ EL	425 mm/km		

カテゴリーIII GBAS (GAST-D) SARPs 検証用モデル

パラメータ	値の範囲	
幅 (w)	25-200 km	
変動幅 (D)	0-80 m	
移動速度 (v)	0-1500 m/s	
勾配 (g)	移動速度に依存	
移動速度 (v)	勾配最大值 (g)	

v < 750 m/s	500 mm/km	
$750 \le v \le 1500 \text{ m/s}$	I00 mm/km	

* 電離圏環境は地域(特に磁気緯度)によって大きく変わるので、地域ごとに評価が必要

緯度による電離圏擾乱の違い

- * 磁気嵐に伴う電離圏密度増大
- * スケール大
- * 発生頻度低
- ◆ 既存脅威モデルで考慮

- ★ 局所的密度減少「プラズマバブル」
- * スケール小
- * 発生頻度高
- ◆ 既存脅威モデルでは未考慮
- ➡ 低緯度地域に着目した評価が必要

ICAO APAC Ionospheric Studies Task Force (ISTF)

- * アジア太平洋地域におけるGNSS導入を、電離圏脅威回避の側面 から支援することを目的として2011年7月に設立
 - アジア太平洋地域における電離圏データ収集・共有・解析
 - アジア太平洋地域の電離圏特性解析
 - 必要に応じて共通電離圏脅威モデルを開発
 - 宇宙天気のCNSシステムに対する影響の検討
- * 2016年9月、APANPIRG (Asia-Pacific Air Navigation Planning and Implementation Regional Group) に対し成果報告し活動終了
 - アジア太平洋地域共通GBAS電離圏脅威モデル
 - GBAS, SBASおける電離圏脅威に対するガイダンス文書

- LTIAM (Long-Term Ionosphere Anomaly Monitoring)
 - 米国FAA及び韓国KAISTにおいて開発
 - 2周波観測により電離圏遅延量を導出した後、遅延量差を 計算
 - 比較的長い基線(>10km)に適する
 - 大きな勾配を自動検出した後、手動検証
 - 大量データ解析に適する
- * SF-CBCA (Single-Frequency Carrier-Based and Code-Aided)
 - 電子航法研究所において開発
 - |周波観測のみから電離圏遅延量差を導出
 - ・ 周波数間バイアスの影響なし、L2サイクルスリップの影響なし
 - 比較的短い基線(I0km程度)に適する

解析データソース

Location	Period	Analysis Method	Baseline Length
Hong Kong	Oct. 2000–Sep. 2013	LTIAM	4.8–21 km
Hyderabad, India	2004–2015	LTIAM	9.3 km
Bangalore, India	2004–2015	LTIAM	6–20 km
Java, Indonesia	2013–2015	LTIAM	I 5–84 km
Ishigaki, Japan	Mar.–Apr. 2008, Sep.–Oct. 2010	SF-CBCA	I.4 km
Singapore	Sep.–Nov. 2011, Mar.–Apr., Sep.–Oct. 2012 Mar.–May, Sep.–Nov. 2013 Feb.–Apr., Sep.–Oct. 2014 Mar.–Jul. 2016	LTIAM	2.3–33 km
Bangkok, Thailand	Sep.–Oct. 2011	SF-CBCA	I2 km

電離圈遅延

電離圈勾配

衛星仰角

25

20

15

10

5

600

400

200

·200

-400

0

Gradient [mm/km]

Slant Delay [m]

解析結果:衛星仰角と電離圏勾配

- ★ 電子航法研究所が主導したICAOアジア太平洋地域電離圏問題検 討タスクフォース(ISTF)を通してアジア太平洋地域の電離圏環境 評価を行った
 - アジア太平洋地域共通GBAS電離圏脅威モデルの定義
 - ◆ 最大電離圈勾配600 mm/km(衛星仰角非依存)
 - 電離圏脅威に対するガイダンス文書
 - GBASに対する影響と回避策
 - SBASに対する影響と回避策
 - ◆ ICAOアジア太平洋地域の文書として公開
 - https://www.icao.int/APAC/Documents/edocs/

- 他の脅威空間パラメータ解析
- ★ 各国のGBAS導入における情報を 共有
 - アジア太平洋地域共通電離圏
 モデルの改訂、高カテゴリー
 GBAS導入への寄与
- ★ アジア太平洋地域共通電離圏脅
 威モデルの日本に向けた最適化
 - 過去の日本で得られた大量
 データ解析による脅威空間の
 最適化
 - ➡ 日本におけるGBASの性能向上 _{平成29年度電子航法研究所研究発表会 (平成29年6月8~9日)}

