LDACS1のビット誤り率特性の改善

監視通信領域 北折 潤、塩見 格一

2016/6/10

- ・はじめに
- LDACS1概要
- フェージング環境下のLDACS1 BER特性
- 改善策
 - 実験
 - -考察
- ・まとめ

はじめに

Air Navigation Conference/11

- 十分な通信性能
- ATMの効率化を考慮した通信の高度化

が必要と勧告

Action Plan 17

- 洋上・陸域・空港面それぞれの領域に適切な通信
 システムを選定
- ・陸域向けシステム4種類はどれもLバンドを使用

▶ 4種類を2種類にまで集約

L-band Digital Aeronautical Communications System Type 1/Type 2

これまでの背景

- VDLに代わる陸域高速DLとしてLDACS提案
 他のARNSシステムとの共用問題
 - LDACS1とLDACS2に互換性なし
 - 高速伝送、周波数利用効率等でLDACS1優位
- LPES(LDACS物理層実験システム)
 - -フェージング環境下でLDACS1のBER特性劣化 -リンク方向によってBER劣化度合いが異なる

受信機側での信号処理法を見直し、 フェージング環境下でのLDACS1の BER改善を図る

LDACS1概要

- OFDM(直交周波数分割多重方式)
- FDD(周波数分割複信方式)
 - FL(フォワードリンク)とRL(リバースリンク)は別々

航空機局→地上局

LDACS1信号配置図

使用周波数带	960-1164[MHz]		
複信方式	FDD		
アクセス方式	OFDMA		
変調方式	4/16/64QAM+OFDM		
チャネル幅	498.05[kHz] x 2		
ビット伝送速度	833.33~2500.0[kbps]		
誤り訂正 (外符号) (内符号)	リードソロモン (パンクチャド)畳み込み		
FFTサイズ	64		
サンプリング時間	1.6[µs]		
OFDMシンボル長	120[µs]		
サブキャリア数	50		
サブキャリア間隔	9.765625[kHz]		

BER特性測定実験環境

フェージング環境設定

環境名	設定		
(AWGN(加法性白色 ガウス雑音))	フェージングなし 直接波のみ 移動体速度(0)		
ENR(エンルート)	Riceフェージング(Kファクタ 15dB) 直接波と2遅延波(0.3µs, 15µs) 移動体速度(600knot)		
TM(ターミナル)	Riceフェージング(Kファクタ 10dB) ドップラモデル(Jakes) 移動体速度(300knot)		
APT(空港面)	Rayleighフェージング ドップラモデル(Jakes) 移動体速度(200knot)		

BER特性実験結果(TM環境、初期実装)

LDACS1 BER performances (TM, FEC)

FLとRLのBER特性差の要因

- 判定帰還型等化器
 - 10FDMシンボル前の伝搬路推定値を現在の推定 値で更新する等化方法
- FLデータフレーム(一部)

パイロット信号の時間的配置がOFDMシンボル毎

1つ前のOFDMシンボルで推 定した伝搬路状態を更新

等化器 番号	等化方式	補間計算	補間対象行列	
1	判定帰還型、ゼロフォーシング	線形按分	H ⁻¹	
2	内挿型、ゼロフォーシング	線形按分	Н	
3	3 内挿型、ゼロフォーシング		Н	
4	内挿型、ゼロフォーシング	位相按分	Н	
5	判定帰還型、ゼロフォーシング	位相按分	H ⁻¹	
6	判定帰還型、最小平均二乗誤差	位相按分	H ⁻¹	
7	内挿型、最小平均二乗誤差	位相按分	Н	
8	判定帰還型、最小平均二乗誤差	位相按分	Н	

RLデータフレームパイロット信号配置パターン

等化器 番号	等化方式	補間計算	補間対象行列	BER特性 改善度
1	判定帰還型、ゼロフォーシング	線形按分	H ⁻¹	0
2	内挿型、ゼロフォーシング	線形按分	Н	Δ
3	内挿型、ゼロフォーシング	線形按分	Н	×
4	内挿型、ゼロフォーシング	位相按分	Н	X
5	判定帰還型、ゼロフォーシング	位相按分	H ⁻¹	0
6	判定帰還型、最小平均二乗誤差	位相按分	H ⁻¹	0
7	内挿型、最小平均二乗誤差	位相按分	Н	Δ
8	判定帰還型、最小平均二乗誤差	位相按分	Н	0

+パイロットパターン3

BER特性実験結果(TM環境)

LDACS1 BER performances (TM, FEC)

BER特性実験結果(TM環境)

LDACS1 BER performances (TM, FEC)

BER特性実験結果(ENR環境)

LDACS1 BER performances (ENR, FEC)

BER特性実験結果(ENR環境)

LDACS1 BER performances (ENR, FEC)

BER特性実験結果(APT環境)

LDACS1 BER performances (APT, FEC)

BER特性実験結果(APT環境)

LDACS1 BER performances (APT, FEC)

RLデータフレームBER改善に関する考察

• 今回BER改善に最も効果があった方法

- 等化器8番とパターン3の組み合わせ

- TMとENRでFLデータフレーム程度のBERまで改善

- 判定帰還型等化器+オリジナルパターンでは伝搬路推定の更新間隔が広く、古い伝搬路推定状態を引きずるためBERが劣化
- ・パターン3はスキャッタドパイロットで各OFDMシンボル内の補間精度は下がるものの、毎回伝搬路推定状態が更新され判定帰還型等化器の特性に適合
- 内挿型等化器での改善効果は低かった
 オリジナルパターンに対しては多少改善効果あり

ENRI-一部補外計算となる等伝搬路推定性能が不十分

RLデータフレームBER改善に関する考察-2

- APTでの特性
 - 等化器8番とパターン3の組み合わせが最良
 - しかしC/N=20[dB]で誤り訂正後BERが10⁻²程度
 - ・現実的には、受信点からみた電波の到来方向に偏りがあるとみられ、Riceフェージングに近い状況になればBERは低下すると期待できる
 - ・誤り訂正適用後BERが10⁻⁴程度以下であれば、上位層の再送機能等によって伝送情報の補償が可能

まとめ

- LPES及びフェージングシミュレータを利用して、フェージング 環境におけるLDACS1のBER特性を調査
- 規定上のRLデータフレームのパイロット信号配置ではフェージング環境に弱く、FLデータフレームに比べて著しくBER特性が劣化
- 等化方式自体は判定帰還型を使うものの、RLデータフレームのパイロット信号配置をスキャッタドパイロットとした場合、
 FLデータフレーム程度までBER特性を改善できた

航空用データリンクは航空機の高速移動が前提 マルチパスフェージング等が通信性能に大きく影響

本研究の成果・知見は、OFDMベースの 航空用高速データリンクの通信性能改善に役立つ

