8.データリンクLDACS1の ビット誤り率特性 監視通信領域 北折 潤、塩見 格一、住谷 泰人、石出 明

目次

- ・はじめに
- LDACS1概要
- LPESを用いたBER特性実験の概要
- BER特性実験結果
 AWGN通信環境
 - 周波数シフト耐性
 - フェージング環境
- 考察

はじめに

動態情報、軌道情報、気象情報 等、大量のデータ伝送が必要

- Trajectory Based Operationの実現

 一通信システムの高速化が課題
- VDLに代わる陸域高速DLとしてLDACS提案
 LDACS1案とLDACS2案が並立状態
 それぞれの物理層性能は?
- 物理層の性能検証

 LPES(LDACS物理層実験システム)を製作
 高速伝送、周波数利用効率等でLDACS1優位
 LDACS1のBER(ビット誤り率) 特性について報告

LDACS1概要

地上局→航空機局 いわゆるアップリンク 航空機局→地上局 いわゆるダウンリンク

- L-band Digital A mautical Communication System type1
- FDD(周人数分割複信方式)
 FL(フォワードリンク)とRL(リバースリンク)は別々のチャネル
- OFDM(直交周波数分割多重方式)

LDACS1主要諸元

使用周波数带	960-1164[MHz]		
複信方式	FDD		
アクセス方式	OFDMA		
変調方式	4/16/64QAM+OFDM		
チャネル幅	498.05[kHz] x 2		
ビット伝送速度	833.33~2500.0[kbps]		
誤り訂正 (外符号) (内符号)	リードソロモン (パンクチャド)畳み込み		
FFTサイズ	64		
サンプリング時間	1.6[µs]		
OFDMシンボル長	120[µs]		
サブキャリア数	50		
サブキャリア間隔	9.765625[kHz]		

パイロット信号配置例

(上:スペクトラムアナライザ) 中:信号発生器(アップコンバータ) 下:フェージングシミュレータ

BER特性実験結果(AWGN環境)

EI

BER特性実験結果(周波数シフト耐性)

Eľ

フェージング環境設定

環境名	フェージングタイプ	遅延[µs]	減衰[dB]	最大ドップラ シフト[Hz]
ENR(エンルート)	ピュアドップラ レイリー	0 0.3	0 16	997 603
TM(ターミナル)	レイリー ライス(K=10[dB])	15 0	0	-594 498
APT(空港面)	レイリー	0	0	330

EUROCONTROL. Updated LDACS1 System Specification, Appendix A をもとに近いパラメータを設定した。以下はおおよその想定条件

ENR:移動速度600ノット、地上局・航空機局間に障害物なし、地面等の反 射による遅延波あり TM:移動速度300ノット、地上局・航空機局間に障害物なし APT:移動速度200ノット、地上局・航空機局間に障害物あり

BER特性実験結果(ENR環境)

EN

BER特性実験結果(TM環境)

EN

BER特性実験結果(APT環境)

考察

- BER特性が大きく異なる要因
 - 等化器の特性か?(パイロット信号配置を含む)
 - Decision Feedback Equalizer: 1つ前のOFDMシ ンボルでの伝搬路推定値を更新する等化方法

- OFDMシンボル毎にパイロット信号を配置し、各シンボルでの伝搬路推定が可能
- ・RLデータフレーム

- パイロット信号の時間的配置が飛び飛びのため、 各シンボルの伝搬路推定が不十分

周波数シフト耐性(内挿等化)

EI

考察(周波数シフト耐性)

- ・内挿等化器を用いた比較実験
 - RL周波数シフト耐性がDFE等化器に比べて ±700[Hz]程度まで改善
 - 内挿処理のためパイロット信号に近いOFDMシ ンボルほど等化が正確
 - -しかし、RLのシフト耐性は航空機局の移動速度 を考えると不十分
 - パイロット信号配置の変更などでシフト耐性の改善

考察(フェージング環境下BER特性)

・FLデータフレーム

- レイリーフェージング (APT) 環境
 - ・C/Nが高くてもBERが大
 - ・プロトコル上位層での再送機構等によるデータ補償を 併用する必要あり
- 強い直接波を受けられる環境(ENR、TM)
 - ・高C/Nでは誤り訂正が効き、BERを抑えられた

BER特性実験結果(TM環境)

Eľ

BER特性実験結果(APT環境)

EI

考察(フェージング環境下BER特性-2)

- ・RLデータフレーム
 - DFE等化器
 - 環境条件によらず最良値でも誤り訂正後BERが0.08
 程度以上
 - ビット誤りが多すぎてデータ伝送に不適
 - 内挿等化器
 - ENR: C/N=30[dB]で誤り訂正後BERが0.3程度。直接 波のドップラシフトが周波数シフト耐性の範囲を超えて いることが原因
 - APTとTM: BER特性の改善は見られたが、いずれも FLの結果より悪かった。レイリーフェージング環境で はデータの再送が頻発する可能性がある。

まとめ

- AWGN環境、周波数シフト環境、フェージング環境下での LDACS1のBER特性を評価した。
- LDACS1はFLとRLでフレーム構成及びパイロット信号配置 が異なり、DFE等化器では特にRLで十分なBER特性が得ら れなかった。
- APT環境では誤り訂正の効果が限定的で、訂正しきれない データについて再送要求が頻発する可能性がある。
- 今後は、FLとRLにそれぞれ適したパイロット信号配置や等 化器を求め、評価していく予定である。等化以外にも信号同 期処理などについても検証予定である。

