12. 飛行速度調整による時間管理の検討

航空交通管理領域 ※福田 豊、白川 昌之、瀬之口 敦

1. はじめに

将来の航空交通管理(ATM:Air Traffic Management)の運用概念として、航空機のトラ ジェクトリ(軌道)を計画し、それに基づいて運 航する軌道ベース運用(TBO:Trajectory Based Operation)が検討されている。航空機の軌道は、 飛行中および地上走行中の両方での3次元位置 と時間を含む4次元の運動の記述である^[1]。軌道 は、運航者の希望に基づき、気象条件など運航に 影響するさまざまな要素を考慮して生成され、コ ンフリクトや悪天の回避などに対応して修正さ れる。TBOにより、航空機の出発から到着まで を一元的に管理することができ、運航の効率性な どを向上することができる。

電子航法研究所は、TBO を実現するための航 空機の軌道を精密に生成する予測モデルを開発 している。軌道予測モデルは、航空機性能データ、 気象予報データなどを使用して、航空機の4次元 軌道を生成する。また、予測モデルで生成した軌 道を実運航データと比較して、位置予測の誤差解 析を実施している^{[2]-[6]}。

地球環境問題への対応から、排出ガスの低減、 消費燃料の低減が望まれている。現在、首都圏空 港への交通集中による到着機の滞留による飛行 距離の延伸が発生している^[7]。電子航法研究所で はTBOの時間管理により、事前に滞留が予測さ れる場合には、巡航中および降下中の飛行速度の 減速により、消費燃料を節約する運用手法を検討 している^[8]。

本報告では、航空機の速度調整による時間管理 の実現性と便益について検討する。初めに、航空 機の運航と燃料消費量について、航空機の性能モ デルより説明する。次に、降下区間および巡航区 間での速度調整による時間調整についてのシミ ュレーション結果を示し、経路延伸による滞留と 比較する。

2. 航空機の運航モデル

航空機の運航と燃料消費量について、航空機性 能モデルを使用して説明する。航空機性能モデル はユーロコントロールの BADA (Base of Aircraft Data)を使用した^[9]。BADA は、航空 機を質点としたエネルギー保存則に基づくモデ ルである。

航空機の速度は、較正対気速度(Calibrated Air Speed:CAS)、真対気速度(True Air Speed: TAS)、対地速度(Ground Speed:GS)の3種 類に区分される。CAS は、ピトー静圧式速度計 の速度に対気速度系統の誤差の補正を加えた速 度で、コックピットの速度計に表示され、飛行操 作に用いられる。TAS は、CAS に対して飛行高 度における空気密度比および空気の圧縮性の影 響を修正した速度である。GS は、地表面に対す る速度で、TAS に飛行経路に対する風速成分を 加算して求める。航空機は、飛行操作に使用され る CAS またはマッハ数を一定にして飛行するこ とが多い。ここでマッハ数は音速との比で示した 航空機の速度である。

航空機の運動計算には、航空機を質点としたエ ネルギー保存則に基づくモデルを使用する。これ は、航空機に作用する力(推力と抗力)の仕事率 が、機体の運動エネルギーと位置エネルギーの増 加率と等しくなるモデルである。ここで、運動エ ネルギーは速度、位置エネルギーは高度に対応す る。例えば、アイドル推力による CAS 一定の降 下では、推力、抗力、速度から降下率を算出する ことができる。抗力は速度、空気密度、航空機の コンフィグレーション(フラップ、ランディング ギアの有無)などの関数となり、速度が増加する ほど抗力は大きくなる。また、推力と燃料消費率 はほぼ比例する関係がある。

図1から図3にBADAで生成した航空機の軌 道の高度、速度、燃料消費率の例を示す。航空機

図3 燃料消費率

の型式は、大型機のボーイング 777-300 (B773)、 重量は BADA の参照重量の 237.6 t とした。大気 モデルは標準大気を使用し、風は無風とした。横 軸は飛行時間を示す。離陸から着陸までの飛行時 間は 1 時間 4 分、飛行距離は 429 NM (795 km, 1 NM = 1.852 km) である。

航空機の上昇中は、推力と抗力の差分により、 位置エネルギーと運動エネルギーが増加する^[10]。 BADA の運航速度モデルでは、上昇中の航空機 の CAS は、高度帯毎に一定速度が定義されてい る。CAS 一定速度の上昇においても、高度が上 昇するに従って空気密度が小さくなるため、図 2 のように TAS は増加する。さらに上昇して、高 度が CAS 基準の運航とマッハ数基準の運航の境 界の高度である遷移高度以上になった場合は、 CAS 一定速度の上昇から、マッハ数一定速度の 上昇に変化する。この例の遷移高度は 31,560 ft (9.62km, 1 ft = 0.305 m) であり、この高度を 通過した飛行時間 1,344 秒の時点から、TAS が 低下している。上昇時の燃料消費率は他の区間に 比べて大きい。

巡航中はマッハ数一定速度の飛行であり、推力 は抗力とほぼ均衡する。高度 33,000 ft(10.06 km) を、マッハ数 0.84 (TAS に換算すると 490 kt(252 m/s, 1 kt = 0.514 m/s)) で巡航中の重量 237.6 t の航空機の運動エネルギーは 7.5 GJ、位置エネ ルギーは 23.4 GJ、合計エネルギーは 31.0 GJ で ある。運動エネルギーと位置エネルギーの割合は、 約 1:3 であり、位置エネルギーが大きい。

降下中は、アイドル推力により、位置エネルギ ーを運動エネルギーに変えながら、グライダーの ように降下する。運航速度モデルでは、上昇と同 様に、高高度ではマッハ数一定速度、遷移高度以 下では CAS 一定速度が高度帯毎に定義されてい る。アイドル推力のため、図3のように降下中の 燃料消費率は小さい。着陸前には、フラップやラ ンディングギアを使用するコンフィグレーショ ンとなり、抗力が増加するので、推力を増加させ、 燃料消費率も増加する。

この計算例の燃料消費量の合計値は 8,951 kg である。区間に分けると上昇区間が 6,050 kg、巡 航区間が 2,334 kg、降下区間が 566 kg であり, 割合ではそれぞれ 68%、26%、6%となる。

3. 降下区間と巡航区間の速度調整

3.1 経路延伸による時間調整

航空機の目的空港が混雑している場合に、着陸 待ちのため、空中で時間調整をすること(滞留) がある。通常、航空管制官からのレーダ誘導の管 制指示により、経路を延伸し、滞留することが多 い。第2章の例に対して、滞留時の燃料消費量を 推定する。航空機は滞留のために、降下区間の途 中に高度15,000 ft で CAS 310 kt の水平飛行を し、その後は再びアイドル推力で降下する。この 水平飛行区間の TAS は 383 kt、燃料消費率は 131.8 kg/min である。仮に5分間の滞留をこの 水平飛行により実現する場合の燃料消費量の増

加分は659 kg、延伸する経路長は32 NM である。 また、10 分間の滞留の場合は、それぞれ1,318 kg、 64 NM となる。

3.2 降下区間の速度調整による時間調整

航空機の降下区間で速度を調整し、時間調整する方法を検討する。航空機の降下区間では、第2 章の例のとおり、アイドル推力の降下とする。降 下速度を変更した場合の飛行時間と燃料消費量 を求める。

図4と図5にBADAに基づく航空機の降下速 度の調整幅の例を示す。図4はCASを示し、図 5はそれを変換したTASを示す。最大速度、最 小速度、失速速度はBADAの飛行性能データか ら、標準速度は運航速度モデルから算出した。航 空機の最小速度は、失速速度に安全率を加えて設 定される。また、最大速度は型式毎にCASとマ ッハ数が決められている。全体的に標準速度より

図7 降下区間の軌道

加速する速度調整範囲は小さいが、減速する速度 調整範囲は大きい。また、高度 10,000ft 以下で は CAS が 250 kt 以下とする運用上の制限がある。

巡航高度 33,000 ft から高度 1,000 ft までの降 下区間における飛行時間、飛行距離、燃料消費量 を比較する。図 6 のとおり、高度 33,000 ft から 10,000 ft の区間において、CAS を 310 kt から 250 kt まで 10 kt 毎に変化させ、飛行軌道を生成 した。高度 10,000 ft 以下では標準速度とした。

航空機が降下中に減速する場合には、降下率を 低減させたり、水平飛行区間を飛行することによ り減速する^[12]。今回のシミュレーションでは、 モデルを簡易化するため、速度の変更時間は、瞬 間的に変化するとし、この遷移区間は省略した。

図7に降下区間の軌道を示す。CASを低減す ると、抗力が小さくなるので、飛行距離が長くな る。この点を考慮して、図では全区間の飛行距離 が429 NM に等しくなるように、降下開始点

CAS (kt)	飛行 時間 (秒)	飛行 時間差 (秒)	飛行 距離 (NM)	飛行 距離差 (NM)	降下時 燃料 消費量 (kg)	巡航 補正 燃料 (kg)	燃料 消費量 合計 (kg)	燃料 節約量 (kg)
250	1,635	290	139.6	10.7	664.8	-182.8	482.0	-84.2
260	1,588	243	138.9	10.0	648.6	-170.5	478.0	-88.2
270	1,539	194	137.6	8.7	631.6	-148.5	483.1	-83.2
280	1,489	144	135.9	6.9	614.3	-118.7	495.6	-70.7
290	1,440	95	133.8	4.9	599.1	-83.3	515.9	-50.4
300	1,391	46	131.4	2.5	571.9	-42.6	529.3	-37.0
310	1,345	0	128.9	0.0	566.2	0.0	566.2	0.0

表1 降下速度の比較

(TOD: Top of Descent)の位置を修正した。

表1に各速度における飛行時間、燃料消費量を 示す。CAS を低減すると、降下区間の飛行時間 と飛行距離は長くなる。飛行時間の差は最大290 秒、飛行距離の差は最大10.7 NM である。表1 では、標準速度CAS 310kt を基準とした差分を 示す。

降下区間の燃料消費率はアイドル推力のため、 速度には依存しない。そのため、低速の場合は降 下区間の飛行時間が長くなることにより、燃料消 費量は増加する。但し、低速の場合は、降下区間 の飛行距離が長くなる分、TODの位置を変更し、 巡航区間を短縮することができる。表1では、巡 航補正燃料が巡航区間での燃料節約分を示す。こ の数値は、降下区間での飛行距離の差分を巡航区 間の速度マッハ 0.84 (TAS 489 kt)で割り、巡 航区間の燃料消費率 139.5 kg/min を掛けて、節 約できる燃料消費量に変換した。降下時燃料消費 量と巡航補正燃料を加算したものが、燃料消費量 合計値である。これは、CAS が 260 kt の時に最 小値となり、標準速度 310 kt に比較して、88 kg 節約できる。

3.3 巡航区間の速度調整による時間調整

航空機の巡航区間で速度を調整し、時間調整する方法を検討する。巡航区間では速度により燃料

消費率が変化する。

図 8 に TAS と燃料消費率の関係を示す。巡航 速度はマッハ 0.85 からマッハ 0.70 まで 0.01 刻 みに変化させた。B773 の巡航区間のフライトエ ンベロープは、図 4 の降下区間と同様に、最大速 度マッハ 0.89 または CAS 330 kt、最小速度は CAS 208kt である。巡航高度 33,000 ft における マッハ 0.70 は CAS に換算すると 246 kt となり、 フライトエンベロープの範囲内となる。速度が遅 いほうが抗力が小さくなり、それと釣り合う推力 が小さくてよいので、燃料消費率が少ない。

図9にTASと航続率(SR:Specific Range)の関係を示す。航続率は単位燃料当りの飛行距離で定義される。速度が遅いほうが燃料消費率が少なくなるが、単位時間当たりの飛行距離も小さくなる。航続率の最大値は、マッハ 0.81 の場合である。この速度が飛行距離に対して燃料消費量が最も少なくなる。

巡航には、航続率が最大となる MRC (Maximum Range Cruise) と LRC (Long Range Cruise)のモードがある^[11]。LRC は、 MRC に比べて SR が 1%低下するが、速度が 3~ 5%増加するため、飛行時間と消費燃料を考慮す ると効率的な運航となる。飛行管理システム (FMS: Flight Management System)のコスト

インデックス CI に基づく経済速度はこの考え方

を拡張したものであり、MRC 速度以上で LRC 速度付近の速度範囲から CI に応じた速度を算出 する。CI は飛行時間と燃料消費量の重み付けを 指定する係数であり、時間コスト÷燃料コストを 示す。CI を 0 に設定した場合は、燃料コストが 最小となる MRC と一致する。

図 10 に離陸から TOD (300 NM) までの上昇 区間と巡航区間の合計飛行時間を示す。ここでは、 遷移高度以上の上昇区間と巡航区間のマッハ数 を変更し、軌道を生成した。上昇区間の CAS は 共通とした。マッハ 0.70 で飛行した場合は、標 準のマッハ 0.84 に比較して、飛行時間が 288 秒 遅くなる。

図 11 に離陸から TOD までの燃料消費量を示 す。標準速度に比較して、速度が遅くなるほど燃 料消費率は減少するため、燃料消費量が減少し、 マッハ 0.77 で最小値となる。それ以下の速度で は、飛行時間が増加する影響が大きくなり、燃料 消費量は増加する。標準速度のマッハ 0.84 に比 較して、マッハ 0.77 では、63 kg 消費燃料が減 少し、マッハ 0.70 では 29 kg 消費燃料が増加す

る。

3.4 滞留手法による燃料消費量比較

航空機が約5分間および約10分間の滞留をす る必要がある場合において、速度調整による時間 調整と燃料消費量を比較する。

5分間の滞留の場合は、通常速度で経路を延伸 する方法では第3.1節のとおり659kg燃料消費 量が増加する。巡航区間の速度調整では、第3.3 節のとおり速度をマッハ0.70に減速することに より、到着時刻を288秒遅くすることができる。 但し、燃料消費量は29kg増加する。また、降下 区間の速度調整では、第3.2節のとおりCASを 250ktに減速して降下することにより、到着時 刻を290秒の遅くすることができ、燃料消費量 を84kg節約できる。降下区間で速度を減速する 速度調整は、経路延伸での滞留に比較して、両者 の燃料消費量の増減の和の743kgが節約できる。 滞留なしの場合の標準飛行時間1時間6分、燃料 消費量8,951kgと比較すると、5分間の滞留の 場合の速度調整による燃料消費量の節約の割合 は約8.3%である。

10 分間の滞留の場合は、経路延伸の滞留では、 1,318 kg 燃料消費量が増加する。速度調整による 時間調整では、巡航区間でマッハ 0.70 に減速し、 降下区間で CAS 250 kt に減速する両方を実施 することにより、578 秒遅くすることができ、 燃料消費量は 55 kg 節約できる。両者を比較する と、速度調整が経路延伸に比較して 1,373 kg の 燃料を節約できる。

3.5 検討課題

速度調整による滞留の実施のためには、混雑空 港における航空機の到着時刻を早期の段階で計 画する必要がある。航空機の到着時刻の計画には、 AMAN と呼ばれる到着管理システムが研究開発 されている^[13]。降下区間で速度調整を実施する 場合は、TODの前の時点で着陸の約20分前、ま た、巡航区間での速度調整の場合は、巡航時間を 30分とすると、着陸の約50分前となる。このよ うな計画のためには、航空機の正確な軌道予測と 制御技術、新しい運用ルールの作成、関係者での 情報共有するための情報通信基盤が必要である。

4. おわりに

本報告では、航空機の速度調整による時間管理 の実現性と便益について検討した。初めに、航空 機の運航と燃料消費量について、航空機の性能モ デルより説明した。次に、降下区間および巡航区 間での速度調整による時間調整についてシミュ レーション結果を示し、経路延伸による滞留と比 較した。速度調整による時間調整が経路延伸によ る滞留と比較して、燃料消費量を低減できること がシミュレーションにより確認できた。

今後は、より現実的な運航を想定した燃料消費 量の比較、将来の航空交通シナリオに基づく時間 管理のシミュレーション、時間管理の制御手法の 検討を進める予定である。

参考文献

 ICAO, "Global Air Traffic Management Operational Concept", ICAO Doc 9854AN/458, 2005.

- [2] 白川,福田,瀬之口,"航空機性能モデルを 用いた航空機軌道予測",信学技報 SANE 2008-99,2009年1月
- [3] 白川,福田,瀬之口,"航空機性能データを 用いた軌道モデル誤差推定,電子航法研究所 研究発表会講演概要",2009年6月
- [4] 白川,福田,瀬之口,"航空機軌道予測における誤差要因の解析",信学技報 SANE 2009-167,2010年2月
- [5] 福田,白川,瀬之口,"トラジェクトリ予測の誤差要因解析",電子航法研究所研究発表会講演概要,2010年6月
- [6] 福田,白川,瀬之口,"トラジェクトリ予測 モデルの開発",第48回飛行機シンポジウム, 2010年11月
- [7] 福田,蔭山,山本,宮津,行木,"運航実績 データによる飛行距離の測定手法の検討", 電子航法研究所研究発表会講演概要,2007 年6月
- [8] 福田,岡,山本,"時間管理手法の評価シス テムの開発",電子航法研究所研究発表会講 演概要,2008年6月
- [9] Eurocontol Experimental Center, "User Manual for the Base of Aircraft Data (BADA), revision 3.7 ", EEC Technical/Scientific Report No.2008-0003, March 2009.
- [10] 白川,福田,瀬之口,"航空機の垂直軌道に ついての一考察",第48回飛行機シンポジウ ム,2010年11月
- [11] Roberson, "Fuel Conservation Strategies: Cruise Flight", Boeing Aero Quarterly qtr_04 | 07, 2007
- [12] 福田,白川,瀬之口,稲波,武市"継続降 下運用(CDO)について",日本航空宇宙学 会第42期年会講演会,2011年4月
- [13] Eurocontol, "AMAN Status Review 2010", Edition Number: 0.1, Dec. 2010.