積雪によるGPパス空間誤差評価のための飛行実験

電子航法開発部 横山 尚志、 朝倉 道弘、田嶋 裕久 航空宇宙技術研究所 増位 和也、 石川 和敏、 冨田 博史

1. はじめに

降雪地にある空港では、反射面の積雪によってグ ライドパス(GP)の空間誤差が増加することが知ら れている。しかし、積雪によるGPパス空間誤差の予 測方法は見当たらず、GPアンテナの前方にある計器 着陸システム(ILS) 付属のモニタでは積雪によるGP パスの変化を観測することができない。また、季節 風と降雪に阻まれて、積雪時の機上データを取得す ることも容易ではない。GP反射面の積雪は、多層構 造に堆積し、その形状も吹き溜まりによって3次元 に変化する性質がある。

CAT では著しく低視程時の運航が行われるが、 従来の地上物標に依存する運航に代わって高い信頼 性を付与した ILS システムの導入により滑走路への 自動着陸が達成される。仮に、積雪によってGPパス が規定値を逸脱する事象が発生すれば、ILSのシス テムインテグリティが低下した状態に陥るので、積 雪時にはファーフィールドモニタに相当する GP パ スの空間誤差監視システムの確立が要望されている。

そのためには、GP反射面の積雪によるGPパスの 空間誤差を高精度に予測することが必要である。そ こで、当研究所では、GP反射面の積雪形状と雪質変 化を入力信号に用い、GPパスの空間誤差を予測する 監視システムの開発を進めている。監視システムの 空間誤差の予測精度を確認するには飛行実験により 実証データを取得する必要がある。そこで、当研究 所は独立行政法人航空宇宙技術研究所の実験用航空 機 MuPAL-αを用いた飛行実験を青森空港で行い、 ILS 進入に対する積雪の影響を評価する共同研究を 実施している。

本稿は、平成14年10月の積雪前に行った飛行実 験結果と、GPアンテナ前方の空港面構造をモデル化

して行ったシミュレーション結果について報告する。 まず、2. で飛行実験方法と MuPAL-α の実験システ ムの概要、3. で予測計算方法、飛行実験との比較に よる予測精度の確認および4. でGPパス監視システ ムの開発状況について述べる。

2. 飛行実験

図1にGPアンテナ前方の地形と飛行実験における 進入コース経路図を示す。今回の飛行実験は、雪が 降る前にGPアンテナ前方の空港面構造によるGPパ スの空間誤差を把握することと傾斜面に対する GP パス監視システムの予測精度を確認するために実施 した。

2.1 MuPAL-αの実験システム

図2にMuPAL-αの実験システムを示す。MuPALαは、高精度 GPS 補強型慣性航法システム(GPS) Aided Inertial-navigation Avionics 略称GAIA)と 地上からアップリンクされたGPS補正信号を利用し て、自機位置を1m以内の誤差で計測することができ る⁽¹⁾。図1にMuPAL-αによる飛行実験の進入コース を示す。水平方行はローカライザ(LOC)の進入コー ス中央と左右1ドットとし、GPパスは3度とする。 MuPAL-αでは、コックピットに搭載した大型液晶 ディスプレイのトンネル型経路表示(図3)を用い、全 てのケースにおいて幾何学的に正確な進入コースを 表示している。また、データ記録システムにより、飛 行中のILS、電波高度計(RA)および自機の3次元位置 データを収集することができる。

図 1 青森空港におけるGPアンテナ前方の空港面構造と3通りの進入方式

図2 飛行評価システム

空港面構造によるGPパスシミュレーション

青森空港における GP アンテナ前方の空港面構造 の特徴は、GP 反射面が滑走路から 1% から 1.5% の 下がり勾配を有し、前方に高さ数mの丘があること である。シミュレーションではそれらをモデル化し て解析する。

3.1 **予測計算方法**

GP反射面の反射波を計算するには、一般に図4に 示す直交座標系のx-z平面の変形を計算する⁽²⁾。反射 面が3次元に変形する単純な場合として、今回はyz面が1%の傾斜をしている場合の予測計算をする。 図では反射波の解析に必要なイメージアンテナ等を 示してある。1%の傾斜面に送受信アンテナの座標変 換を行って反射波の変化を計算する。ここでは、yz面との内積によりアンテナ高を計算する。

また、GPパスには前方の丘によりベンド状の空間 誤差が発生する。丘はフランスパンの形状をしてい るので、丘の稜線を一次式にモデル化し、航空機方 向の回折波の回折点を計算する。ここで、丘の回折 点に至る電波の伝搬経路は直接波と地面反射波によ る2経路になる。丘から航空機に至る経路はその先 にある谷の形状から谷で反射する回折成分は無視し、 丘と航空機に至る経路のみ計算する。

以上により受信電界は次式によって求められる。

$$E_{s,h}^{t} = E_{0} \left[\frac{e^{-jks_{0}}}{s_{0}} + \Gamma \cdot \frac{e^{-jks''}}{s''} + \frac{e^{-jks'}}{s'} D_{s,h} \cdot A_{d} \cdot e^{-jks'} \right]$$
(1)

ここで、 s_0 、s、sは直接波、反射波および回折波の 伝搬経路で、、 $D_{s,h}$ 、 A_d は反射係数、回折関数及び 発散係数である。

3.2 飛行実験結果とシミュレーションの対照性 図5の赤線は3通りの進入コースを飛行したとき

図3 液晶ディスプレーによるトンネル表示

の航空機で計測された受信機の指示値を示す。縦軸 は受信機指示値(Difference of Depth of Modulation;DDM)を角度で表示している。ここで、 0.1°はDDMの21 μ A、パス幅は±0.36度に相当す る。MuPAL- α は14kmでGPパスに会合した後、パ スを降下する。図5(a),(b)の4km付近にある大きな 変化は風によって航空機が偏移したものである。3通 りの進入コースの誤差がほぼ±0.2度以下である。1 ドットずれたコースを高精度で飛行できるのは、 MuPAL- α のトンネル型経路表示を用いた結果であ る。また、図5の青線は、D-GPSで取得した航空機 の位置(x,y,z)をシミュレーション・プログラムに 入力し、航空機位置における指示値を計算した場合 であるが、実験結果とのずれも少なく対照性は良好 である。

3.3 GPパスの空間誤差の検討

D-GPSで測位した航空機位置(x,y,z)との差から算 出された飛行実験による空間誤差である。このよう な処理によって図4に示す航空機位置の変化が排除 されて、図1の空港面構造による空間誤差が求めら れる。シミュレーションでは、航空機の位置をプロ グラムに入力して MuPAL-αと同じコースを降下し たときの空港面構造のモデルによる GP パスの空間 誤差を計算している。

実験結果には、全域に微細な変動が生じている。 これはプロペラ変調による90Hz/150Hzの変調信号 ひずみと航空機の姿勢変化による受信パターンの変 化によるものである。また、図の(a)と(b)を比較する と、2kmより遠方では誤差0.03度(6µA)以下の精度 で一致し、対照性は良好である。

次に、3通りの進入コースを飛行したときの角度誤 差の相違について検討する。図7は3通りの進入コー スを飛行したときの反射点の位置の変化を計算した ものである。図の(a)は反射点の(x,y)方向の変化で、 図の(b)は反射点の(x,z)方向の変化を示す。黄色は

GPアンテナの上側素子、緑色は中間素子、青色は下 側素子の場合である。各素子における3本の曲線は、 3通りの進入コースを飛行したときの反射点の位置を 示す。反射点の位置の変化は、航空機が2kmより遠 方になると位置の変化が少なくなるが、2kmより近 傍になると反射点の位置のy方向とz方向の変化が増 加する。反射点の位置の変化による空間誤差の発生

理由を次に示す。

反射点がz方向に変化することは、見掛け上、 GPアンテナの素子間隔が変化することである。これによってサイドバンド成分のナル点が変化し、 パス角のずれによる空間誤差が発生する。

近傍では、 の他に近接位相効果による角度誤 差が相乗される。これはGPアンテナの開口面がア ンテナイメージを含めると25mにもなり、送受信 点の経路差が生じる現象である。

4. GPパスの監視システムの進捗状況

GPパス監視システムの開発は平成14年度から3 年計画で研究する。前述の飛行実験に加えて、平成 14年度の飛行実験と地上実験は15年の1月~2月に 2回行っている。以下、地上実験の進捗状況を述べる。

4.1 積雪によるGPパス監視システム

図8にGPパス監視システムのブロック図を示す。 本システムはGP反射面の積雪形状と雪質データを 入力し、前方の丘による回折波も考慮してGPパスの 空間誤差を算出する監視装置である。平成14年度に は、積雪の誘電率測定と3Dレーザプロファイラを用 いてGP反射面全体の測量を行った。

GP反射面の積雪深測定は、現在、レーザポインタ により6点の定点測量を行っている。この方法は局 所的な測定で、吹き溜まりが少なければ反射面全体 の積雪深を代表することができる。しかし、平成13 年度の積雪実験の結果、GP反射面の積雪深は、平坦 ではなく、規定の30cmを逸脱する吹き溜まりが局 所的に存在することが確認された。そこで、平成14 年度には、積雪形状の3D測量をレーザプロファイラ を用いて行った。現在は、測量結果の精度確認を行っ ているところである。また、積雪の雪質測定は、 10cm スタックのセンサーアレーを用いて層状に堆

図8 GPパス空間誤差監視システム

積する積雪面の誘電率を測量し積雪面の反射係数を 求める。以上の結果を基にして、平成15年度の積雪 実験では、積雪の形状・雪質の計測データをGPパス の監視システムに入力して予測計算を行い、飛行実 験結果との比較・検討をする予定である。

5.**まとめ**

平成14年10月に青森空港において、MuPAL-αを 用いた無積雪時の飛行実験を行い、シミュレーショ ンの精度を確認するための実証データを取得した。 一方、シミュレーションでは航空機の位置を予測プ ログラムに入力して同空港の空港面構造モデルによ るGPパス空間誤差を計算した。その結果、次のこと が明らかになった。

(1)今までは、進入コース以外の仮想進入コースの 設定と飛行実験が不可能であり、y-z方向に傾斜す る3次元の積雪形状評価のための実験データを取 得することができなかったが、MuPAL-αの実験 システムにより、仮想進入コースを±0.2度以下の 誤差で飛行することが可能になった。

(2)GPアンテナ前方の空港面構造を単純な傾斜面 とするモデルでシミュレーションした結果、無積 雪時の飛行実験結果との対照性が良好であり、シ ミュレーションの有効性を確認することができた。 今後は、3次元の測量データを用いて、予測精度の 向上を図る予定である。

(3)航空機の位置が2kmより近傍になると、反射 点の位置変化によりGPパスの空間誤差が増加す る。その要因は反射点のy-z方向の変化によるサ イドバンド成分のナル点の変化と近接位相効果と の相乗効果であることが確認された。

平成15年度にも、ILS進入に対する積雪の影響を 評価する飛行実験を行い実証データの蓄積を図る予 定である。地上実験では、計測した積雪の形状・雪質 データをGPパス監視システムに入力してGPパスの 空間誤差を予測する監視システムの実用化を進める 予定である。

謝辞

本研究にご協力を頂いた航空局、東京航空局青森 空港出張所の関係各位に感謝の意を表します。

参考文献

(1) 増位他: "多目的実証実験(MuPAL-α)の開発と運用",日本航空宇宙学会、第34期年会講演会,2003.4.8
(2) 横山他: "CAT ILSグライドパスの空間誤差予測に関する積雪実験",全天候委員会,2003.2.5